
Applied Big data

Michel de Rougemont

September 13, 2021

2

Contents

1 Introduction 7
1.1 Mégadonnées . 8

2 Preliminaries 11
2.1 Algorithms . 11
2.2 Basic probabilities . 12
2.3 Probabilistic algorithms . 12

2.3.1 Error amplification . 15
2.4 Examples of probabilistic algorithms . 16

2.4.1 Arithmetic corrector . 16
2.4.2 Trusting a flip . 17
2.4.3 ** Random walk in an undirected graph . 17

2.5 **Important inequalities . 19
2.5.1 Markov . 19
2.5.2 Chebyschev . 19
2.5.3 Chernoff-Hoeffding . 19

3 Hadoop: Distributed File System 21
3.1 HDFS . 21
3.2 Map-Reduce . 22
3.3 A hard example: the edit distance . 22

4 Property Testing 25
4.1 Is a function linear? BLR Linearity Test . 26

4.1.1 Monotonicity Test * . 27
4.2 Testing words . 28

4.2.1 Testing Membership for the Edit distance with moves 28
4.2.2 Testing Membership for the Edit distance . 31

4.3 Testing Graphs . 34
4.4 Testing vs. Learning . 35

4.4.1 Learning a linear Classifier . 36
4.4.2 Learning a Community in a graph . 36

4.5 Exercices . 37

5 Streaming 39
5.1 Moments in a stream of values . 39

5.1.1 Reservoir Sampling . 39
5.1.2 Morris Algorithm for estimating F1 . 40
5.1.3 Estimating F0 . 40
5.1.4 Basic estimator for F2 . 41

5.2 Graph properties from a stream of edges . 42

3

5.2.1 Graph properties by sampling [?] . 42

5.2.2 Graph properties in a stream . 42

6 Social Networks 45

6.1 Pagerank . 46

6.2 Clusters of a given graph . 46

6.2.1 Basics of linear algebra . 47

6.2.2 Spectral methods . 48

6.2.3 Modules via the modularity matrix . 49

6.3 Clusters in a stream of edges . 50

6.4 Random graphs . 50

6.4.1 Random graphs with a power law degree distribution and a cluster 50

6.5 Dynamic Random graphs . 51

6.5.1 Uniform Dynamics . 51

6.5.2 Concentrated Dynamics . 51

6.5.3 General Dynamics . 51

6.5.4 Stream of edges . 51

6.6 Deciding properties . 51

6.6.1 Deciding a dynamic property: ♦ P . 52

6.6.2 Correlation between two streams . 53

6.7 Twitter streams . 53

6.8 Search by correlation . 55

7 Dimension reduction 57

7.1 The fundamental result . 57

7.1.1 Random projections . 58

7.1.2 Gaussian distributions . 58

7.2 PCA: Principal Components Analysis . 59

7.2.1 Covariance . 60

7.2.2 Gram representation . 60

7.2.3 Principal components . 61

7.3 Python code . 61

7.3.1 Covariance, Eigenvectors . 61

7.3.2 Gram’s decomposition . 62

7.3.3 PCA: reconstruction . 62

7.3.4 PCA: reconstruction via the Gram matrix . 64

7.4 Recommendation Systems . 65

7.4.1 Python’s code: Recommendation Systems . 66

7.5 Applications . 69

7.6 SVD decompositions . 69

8 Learning 71

8.1 Neural Networks . 71

8.1.1 Basic neuron . 71

8.1.2 MLP: Multilayers percepton . 72

8.1.3 Back Propagation . 72

8.2 Reinforcement Learning . 74

8.2.1 Markov Decision Processes and Probabilistic Automata 74

8.2.2 Existence of strategies and Equivalence . 76

4

9 Python 77
9.1 Random projections . 78
9.2 Json to Dictionary . 79

9.2.1 Json API . 79

10 R 81

5

6

Chapter 1

Introduction

The analysis of big data uses specific techniques which we present in these notes. It opens new perspectives
as we can measure parameters associated with physical phenomena, have a better understanding and ask new
questions. All scientific areas are concerned and here are some examples.

In astronomy, telescopes around the earth generate many streams of images: how do we efficiently process
these streams? If we look for new interesting planets, where do we point these telescopes? Social networks
provide many streams of data: how do we efficiently analyze them to predict an election, a trend, new
markets and in general some parameters which are difficult to precisely define? For a given brand, can we
find potential new markets or better know our clients? Netflix and Amazon have millions of clients and
thousands of products. How do they predict a potential product we may be interested in?

The class is oriented towards Economy students so that we will insist on social networks and provide tools
to analyze Twitter data at a large scale. We insist on the main concepts and give concrete examples.

In order to characterize the area of big data, one often uses the 4 Vs:

• Volume: generally speaking, if n is the main parameter for the size of the data, n > O(109),

• Velocity: the data are not static but change in time,

• Variety: different sources provide data in various formats: numerical values, trees, relations,....

• Veracity: we should be aware that the data are not perfect, i.e. may be incorrect because of errors
which are either random or malicious. A classical example is the stream of tweets on a given subject.
There are malicious tweets, either created by bots or by individuals who pursue opposite goals.

In classical data analysis, one may look at temporal series such as the price of commodities on some
market. If we measure 100 commodities every minute, we set a stream for 100 times 60.24 = 1440 values per
day or 4320000 values per month, i.e. 4, 3 106 values. Financial values are assumed correct, preformatted,
and represent a moderate volume: they do not fit the big data model, but the classical data model.

In Business Intelligence, we start with an Information System and an OLAP schema to define a class
of OLAP or Analysis queries. The Information System can be large with several data sources. We do not
question the veracity of the data and stay in the realm of classical computations.

Consider two streams of data: the first one is a temporal serie which provides the value of the #bitcoin
every minute, and the second one is the stream of Twitter tweets which contain the tag #bitcoin. The
volume of the Twitter stream is of the order of 20.103 tweets per hour, but varies in time. After a week of
observations, we enter the realm of big data. Volume, Velocity with large sudden variations, Variety as the

7

two streams are structurally different, Veracity as a large proportion of the tweets on the #bitcoin or other
cryptocurrencies, are generated by bots. We have all the ingredients of the big data.

Most of the techniques we use are probabilistic. We mostly sample the bigdata, either as a datawarehouse
or as a stream. There is an underlying probabilistic space Ω and most of our decisions are taken with high
probability. This is often written as :

Prob[Condition holds] > 0.9

which states that the probability that the Condition holds is larger than 0.9. We also write 1− δ instead
of 0.9, as the notations are often equivalent.

The main techniques presented are:

• Hadoop/Map-Reduce: we store large data with a robust distributed file system, and use multiple
processors to speed the analysis of the data.

• Sample the data, according to some distribution, as the uniform distribution. In general there is a
distance between objects, and we can only guarantee that the data satisfy a property or are ε-far from
the property.

• Streaming data: this is the core of the class. Streaming data are ubiquitous and need to be analyzed
without being stored.

• Dimension reduction: if we have a table with many columns, could we reduce the number of columns
(the dimension) ? This is the classical PCA (Principal Component Analysis), which we revisit. The
typical application is a Recommendation system: a matrix A is such that A(i, j) = 1 if client i likes
product j, and 0 otherwise. We know only 1% of the matrix A, and yet Amazon and Netflix predict
which product you might be interested in.

• Learning: we can use millions on data to learn various concepts. In particular specific images of cats or
dogs using neural networks, a specific model. Facebook analyzes 109 images each day and can write a
text description of the image. In another example, we can learn strategies in games such as GO, by
playing millions of games and improve a given strategy.

1.1 Mégadonnées

L’analyse des grandes données utilise des techniques spécifiques que nous présentons dans ces notes. Elle
ouvre de nouvelles perspectives car elle permet de mesurer les paramétres associés aux phénoménes physiques,
de mieux comprendre ces paramétres et de poser de nouvelles questions. Tous les domaines scientifiques sont
concernés comme le montrent les exemples suivants.

En astronomie, les téléscopes autour de la Terre générent de nombreux flux d’images : comment traiter
efficacement ces flux? Si nous cherchons de nouvelles planétes intéressantes, oé pointerons-nous ces télescopes?
Les réseaux sociaux fournissent de nombreux flux de données : comment les analyser efficacement pour
prévoir une élection, une tendance, de nouveaux marchés et en général des paramétres difficiles é mesurer
précisément? Pour une marque donnée, pouvons-nous trouver de nouveaux marchés potentiels ou mieux
connaétre nos clients? Netflix et Amazon ont des millions de clients et des milliers de produits. Comment
prédisent-ils un produit potentiel qui pourrait nous intéresser?

Le cours est destiné aux étudiants en économie de sorte que nous insisterons sur les réseaux sociaux et
fournirons des outils pour analyser les données de Twitter à grande échelle. Nous insistons sur les concepts
principaux et donnons des exemples concrets.

Afin de caractériser la zone de grandes données, on utilise souvent les 4 Vs :

8

• Volume: en général, si n est le paramétre principal pour la taille des données, n > O(109),

• Vitesse : les données ne sont pas statiques mais changent avec le temps,

• Variété d’articles : différentes sources fournissent des données sous différents formats : valeurs numériques,
arbres, relations,......

• Véracité : nous devons étre conscients que les données ne sont pas parfaites, c’est-é-dire qu’elles peuvent
étre incorrectes en raison d’erreurs aléatoires ou malveillantes. Un exemple classique est le flux de
tweets sur un sujet donné. Il y a des tweets malveillants, créés soit par des robots, soit par des individus
qui poursuivent des objectifs opposés.

Dans l’analyse classique des données, on peut s’intéresser é des séries temporelles telles que le prix des
matiéres premiéres sur certains marchés. Si nous mesurons 100 marchandises chaque minute, nous établissons
un flux de 100 multiplié par 60 ∗ 24 = 1440 par jour ou par 4320000 par mois, soit des valeurs de 4, 3.106.
Les valeurs financiéres sont supposées correctes, préformatées et représentent un volume modéré : elles ne
correspondent pas au modèle de données le plus important, mais au modèle de données classiques.

En Business Intelligence, nous commenéons par un système d’information et un schéma OLAP pour définir
une classe de requétes OLAP ou d’analyse. Le système d’information peut étre volumineux avec plusieurs
sources de données. Nous ne remettons pas en question la véracité des données et restons dans le domaine
des calculs classiques.

Considérons deux flux de données : le premier est une série temporelle qui fournit la valeur du #bitcoin
chaque minute, et le second est le flux de tweets Twitter qui contient le tag #bitcoin. Le volume du flux
Twitter est de l’ordre de 20.103 tweets par heure, mais varie dans le temps. Aprés une semaine d’observations,
nous entrons dans le domaine des grandes données. Volume, Vitesse avec de grandes variations soudaines,
Variété car les deux flux sont structurellement différents, Véracité comme une grande proportion des tweets
sur les #bitcoin ou autres cryptocurrencies, sont générés par des robots. Nous avons tous les ingrédients des
grandes données.

La plupart des techniques que nous utilisons sont probabilistes. Nous échantillonnons la plupart du temps
les bigdata, soit sous forme d’entrepôt de données, soit sous forme de flux. Il y a un espace probabiliste
sous-jacent Ω et la plupart de nos décisions sont prises avec une probabilité élevée. C’est souvent écrit comme:

Prob[Condition vraie] > 0.9

qui indique que la probabilité que la condition soit vraie est supérieure é 0, 9. Nous écrivons aussi 1− δ
au lieu de 0.9 et les notations sont équivalentes.

Les principales techniques présentées sont :

• Hadoop/Map-Reduce : nous stockons des données volumineuses avec un système de fichiers distribués
qui duplique les fichiers et utilisons plusieurs processeurs pour accélérer l’analyse des données.

• échantillonner les données, selon une certaine distribution, comme la distribution uniforme. En général,
il y a une distance entre les objets, et nous pouvons seulement garantir que les données satisfont une
propriété ou sont ε-loin de la propriété.

• Streaming data : c’est le coeur du cours. Les données en continue sont omniprésentes et doivent étre
analysées sans étre stockées.

• Dimension reduction : si nous avons un tableau avec plusieurs colonnes, pourrions-nous réduire le
nombre de colonnes (la dimension) ? C’est l’ACP classique (Analyse en Composantes Principales), que
nous revisitons. L’application typique est un système de recommandation : une matrice A est telle que
A(i, j) = 1 si le client i apprécie le produit j, et 0 sinon. Nous ne connaissons que 1% de la matrice A,
et pourtant Amazon et Netflix prédisent le produit qui pourrait vous intéresser.

9

• Learning : nous pouvons utiliser des millions de données pour apprendre divers concepts. En particulier
des images spécifiques de chats ou de chiens utilisant des réseaux neuronaux, un modéle spécifique.
Facebook analyse environ 109 images chaque jour et peut écrire une description textuelle de l’image.
Dans un autre exemple, nous pouvons apprendre des stratégies dans des jeux comme GO, en jouant des
millions de parties et en améliorant une stratégie donnée.

Traduit avec www.DeepL.com/Translator

10

Chapter 2

Preliminaries

2.1 Algorithms

Consider a binary word x ∈ {0, 1}n of length n which may encode an integer. For example, x = 1001 encodes
the integer 9. An algorithm A takes x as input, follows a sequence of elementary operations to produce
an output y ∈ {0, 1}m: we write A(x) = y. Assume as elementary operations, the addition multiplication,
division, test and loops, as they exist in all programming languages. Consider an arbitrary total function f
such that:

f(x) = y

We say that the algorithm A implements f if ∀x, y f(x) = y ↔ A(x) = y.

Consider the following functions:

• f1(x) = 1 if x is a prime number and 0 otherwise

• f2(x) = y if y is the smallest prime number greater than 1 in the prime decomposition of x 6= 1. Assume
f2(1) = 1.

For x = 1001, notice that f1(x) = 0, as 9 is not a prime number. Notice also that f2(x) = 11, the binary
representation of the integer 3 which is the smallest prime number which divides x.

When the output y is 0 or 1, we consider f as a Decision problem, as we can interpret 0 as reject (or NO)
and 1 as accept (or YES). The function f1 is simply the Decision problem: is x a prime number? One often
defines the set of inputs x such that f(x) = 1 as Lf = {x : f(x) = 1} also called the language of f .

When the output y has arbitrary values, we consider f as a Search problem. The function f2 is a search
problem: what is the smallest prime factor of x?

In general x and y are finite structures, words, trees, graphs or hypergraphs. On an input x of size n, we
may tolerate approximate answers in the following sense. For a search problem where y is an integer, A(x)
may be close to the correct answer y if:

y.(1− ε) ≤ A(x) ≤ y.(1 + ε)

The parameter ε is the approximate error, say ε = 10% for example. If the correct answer is y = 800, a
good approximate answer is in the interval [720, 880], within ε.y of the correct answer.

Another very useful approximation is the following:

ProbΩ[y.(1− ε) ≤ A(x) ≤ y.(1 + ε)] > 0.9

11

How do interpret the probability? Imagine that the algorithm uses a special instruction Flip a coin,
several times. It indirectly defines a probabilistic space Ω used in this definition. We need a quick recall on
the basic concepts of probabilities.

Search problem

Decision Problem

A1

x y

A2

x 1 or

0

Figure 2.1: Decision and search problems

2.2 Basic probabilities

For a fair coin, we have the same chance to hit Head (H) or Tail (T). We say that the chance or probability
of each event is 1/2. Assume we repeat two Flips, as in Figure 2.2 (a). We can represent this process as a
tree with all 4 possibilities: HH,HT, TH, TT on each leaf of the tree. What is the chance to obtain HH?
The Flips are independent, hence the probabilities multiply: it is 1/2 ∗ 1/2 = 1/4.

In Figure 2.2 (b), we have a biased coin the probability to have Head is (p=2/3), hence the probability to
have Tail is (1/3).

Assume Algorithm A1 computes a Search problem: the value obtained is on each leaf of the tree. Algorithm
A2 computes a Decision problem and its value is also on each leaf.

How do evaluate the probability of an event? Consider each leaf and evaluate if the event is true on the
leaf. Take the sum of the probabilities of the leaves where the event is true.

For the Algorithm A1, what is the probability of the event: [y.(1− ε) ≤ A1(x) ≤ y.(1 + ε)] ? For ε = 10%,
the event is true on the first 3 leaves and false on the 4th leaf. For the case (a), the probability is then
1/4 + 1/4 + 1/4 = 3/4. For the case (b), the probability is 4/9 + 2/9 + 2/9 = 8/9.

The probabilistic space Ω is defined as the set of leaves with their probabilities.
Suppose the algorithm Flips 30 coins: how many leaves are concerned? The number of leaves will be

230 = (210)3 = 10243 ' 109, a billion leaves. It is a typical situation for a probabilistic algorithm.

2.3 Probabilistic algorithms

A classical view is to only consider algorithms without error. We now consider probabilistic algorithms for
Decision problems such that: if x ∈ L, the probability to accept will be close to 1 and if x 6∈ L, the probability

12

Probabilities

A1(x)

A2(x)

(a) Fair coins p=1/2 (b) Biased coins p=2/3

H

H H H

H

H

T

T T T

T

T

1/4 1/4 1/4 1/4 4/9 2/9 2/9 1/9

810 790 785 13 810 790 785 13

1 1 1 0 1 1 1 0

Figure 2.2: Two Flips with fair coins (a) and biased coins (b)

to reject will be close to 1.

A procedure without error can be implemented on a sequential or parallel machine model, made of
hardware components which are not completely reliable. The software environment (Unix, for example) is
also error prone, as every computer scientist will attest. Let us suppose a rate of error of 10−8 for a given
machine. An imperfect procedure with a rate of error of 10−10 will not be distinguishable from a perfect
procedure, because the error probability due to the algorithm is negligible in comparison with the error
probability due to the machine. In practice, a probabilistic algorithm can be extremely useful.
A probabilistic algorithm is a constructive procedure which uses a new instruction: random choice. One
can flip a coin or randomly choose a value among k equiprobable distinct values. In this chapter, a random
choice is the selection of the values 0 or 1 with probability 1

2 . We can associate a non-deterministic machine
with a probabilistic algorithm: just consider the random choice as a non-deterministic instruction. We define
the notion of probabilistic acceptance of a language, through the use of the computation tree of specific
non-deterministic Turing machines.

Definition 1 A probabilistic program is a non-deterministic process whose computation tree is a complete
binary tree, i.e. all the branches have the same length. At each leaf a deterministic process computes a value.

For simplicity, suppose the value is 0 or 1. A probabilistic execution starts with the initial input x and
follows at each step a possible transition of the program. At each non-deterministic node, the machine makes
a random choice between two possible transitions with a uniform distribution. The computation tree is a
complete binary tree of depth t where all the paths have equal probability. The probabilistic space is

Ωt = {(ρ, 1

2t
) : ρ ∈ {0, 1}t}

The notion of acceptance is defined by comparing the number of accepting paths, i.e. paths with a value
1, accM (x) and rejecting paths rejM (x) i.e. paths with a value 0. In an equivalent way, we talk of acceptance
probability as the quotient of the number of accepting paths by the total number of paths:

Pr Ω[M accepts x] =
accM (x)

2t

13

Pr
Ω

[M rejects x] =
rejMx)

2t

A run or experiment is a path in the computation tree leading to an accepting, or rejecting state.

q0.x

M’

Accepting states

Figure 2.3: The computation tree of M ′′ which accepts with probability > 1
2 iff x ∈ L.

A Monte-Carlo algorithm accepts with the following condition:

Definition 2 A language L is Monte-Carlo-decided by a program M if there exists a constant ε > 0 such
that:

• if x ∈ L, then PrΩ[M accepts x] ≥ 1
2 + ε ,

• if x 6∈ L, then PrΩ[M accepts x] ≤ 1
2 − ε.

Notice that ε must be constant, independent of the input x. In some cases we may accept or reject with
probability 1, and the definition is asymmetric. Another class is a Las Vegas algorithm

Definition 3 A language L is Las-Vegas-decided by a program M if it satisfies:

• if x ∈ L, then PrΩ[M accepts x] = 1 ,

• if x 6∈ L, then PrΩ[M accepts x] = 0.

There is no error but there is no bound on the time to reach a decision. One may in certain cases bound
the expected time to reach a decision.

Example 1 Consider the computation tree below for m = 16 and ε = 0.09. The number of accepting leaves
(9) is not greater than 16/2 + 16 ∗ 0, 09 = 9, 44 and the input is not accepted for this ε = 0.09. It is accepted
for ε = 0.06.

A fundamental property of the class of Monte-Carlo algorithms is that the error probability of 1
2 −ε

can be made arbitrarily small between 0 and 1
2 , in particular very close to 0. This property is called error

amplification and is used repeatedly in all probabilistic situations.

14

q0.x

Accepting stateRejecting state

Figure 2.4: A probabilistic computation tree with 16 final states, 9 accepting and 7 rejecting.

2.3.1 Error amplification

Let us repeat k independent experiments and let us accept x if one of the experiments is accepting. In this
case, the error probability is the probability of obtaining k rejecting answer, i.e. less than pk < (1

2)k.

Let us show that if a problem is in the class BPP, one can also reduce the error probability to (1
2)k, i.e. to

an exponentially small amount, after O(k) experiments. Let us iterate 2m+ 1 times the BPP algorithm and
let us accept according to a majority test, i.e. if the number of accepting experiments is greater than m. Let
p be the error probability 1

2 −ε and q = 1− p. The error probability of this new procedure is the probability
of not accepting when we should have, i.e. the probability µ of obtaining no more than m accepting answers.
We have

(
2m+1
i

)
possibilities of obtaining i accepting answers among the 2m+ 1 cases.

µ =

m∑
i=0

(
2m+ 1

i

)
· p2m+1−i · qi = p · pm · qm

m∑
i=0

(
2m+ 1

i

)
· pm−i · qi−m

≤ p · pm · qm
m∑
i=0

(
2m+ 1

i

)
= p · pm · qm · 22m

µ is indeed the sum on i = 0, ...,m of the probability of obtaining i positive answers, and so 2m + 1 − i
negative answers. By bounding p by 1, one obtains

µ ≤ pm · qm · 22m = (4pq)m

If m = c · k, then µ ≤ [(4pq)c]k. But 4pq = 4 · (1
2 − ε) · (

1
2 + ε) = 1− 4ε2 < 1 ; there exists a constant c such

that (4 · p · q)c < 1
2 and µ ≤ (1

2)k.

The key of the argument rests on the facts that µ ≤ (4pq)m and that 4pq = 1− 4 · ε2 < 1− δ.

In the case of a PP algorithm, one cannot conclude that 4pq < 1 − δ: the probability of error can be
p = 1

2−(1
2)n for a computation tree of depth n. One obtains then: 4pq = 4·(1

2−(1
2)n)·(1

2 +(1
2)n) = 1−(1

2)2n−2.
In order to bound the error probability by (1

2)k, we need to find c such that (1− (1
2)2n−2)c < 1

2 and obtain
c > 22n−3. We need to repeat 2m+ 1 = 2c · k + 1 > 2k · 22n−3 + 1, i.e. Ω(22n), an exponential number of
experiments.

15

2.4 Examples of probabilistic algorithms

We give three examples of probabilistic algorithms. In each case, the probabilistic algorithm has an advantage
compared with deterministic algorithms, usually for time or space:

• Arithmetic corrector

• Trusting a flip

• a random walk for the problem UGAP.

2.4.1 Arithmetic corrector

Assume some arithmetic circuits (addition, multiplication, division) which make errors. For two random
x, y ∈r [0, ...N], the division circuit computes div(x, y) = (q, r) where q is the quotient and r is the rest.
Assume (q, r) are correct with probability 1− p and incorrect with probability p. For example p = 0, 3. Let
us consider the quotient.

Could we reduce the error, to something very small such as 10−9? Yes we can, with the simple probabilistic
algorithm, often called the Majority decision. The problem is defined as:

Input: two integers x et y in the interval [0, ...N].

Ouput: the quotient q in the division of x by y.

The algorithm A which solves the problem takes an additional parameter m which depends on the final
error rate such as 10−9:

A(x, y,m):

Repeat 2m+ 1 times:

Generate ri random in [1, ..., N],

Compute xi = x.ri, yi = y.ri,

Let qi be the quotient of div(xi, yi)

If {q1,q2m+1} has an answer q′ which appears at least m+1 times, called the majority answer, output q′.

Let us show that q′ is correct with probability 10−9 if we choose some small value for m. The probability
that we don’t have a majority answer is the probability to have at least m+ 1 or m+ 2 or.... 2m+ 1 wrong
answers. Let p be the error probability, for example p = 0, 3 and q = 1− p = 0.7. The probability µ of not
having a majority answer is:

µ =

m∑
i=0

Ci2m+1p
2m+1−i.qi = p.pm.qm

m∑
i=0

pm−i.qi−mCi2m+1 ≤ p.pm.qm.22m

µ is the sum over all possible combinations of i among 2m+ 1 to have i correct answers and 2m+ 1− i
incorrect answers. We bound p by 1 and obtain:

µ ≤ pm.qm.22m = (4pq)m

Let p = 1/3, q = 2/3 and 4.p.q = 8/9. In order to have (4pq)m ≤ 10−9, choose m ≥ 9.log10
log9/8 ≥ 180.

This argument is valid aslong as p ≥ 1/2− ε.

16

2.4.2 Trusting a flip

Consider two distant persons Alice and Bob. They want to flip a coin, but do not trust each other. How
should they proceed? For example, Alice lives in Paris, Bob moved to New-York as they are getting divorced.
They share a car and agree to decide the car’s ownership by flipping a coin.

A Hashing function h takes an arbitrary input x and h(x) is a binary word of a fixed length which satisfies
two conditions:

• If x′ = x+ ∆(x), then dist(x, x′) is large,

• Given y it is hard to find some x such that h(x) = y

Sha256 is a classical hash function where y is of length 256. Consider the following algorithm:

A(): Alice Hashes her choice (with the function Sha):
x=Sha(’I choose head’),
Alice sends x to Bob,
Bob flips a coin and announces the result to Alice.

If Bob declares ’Head’, Alice sends the message y=’I choose head’ and concludes that she won. Bob
verifies that x=Sha(y) and is convinced that Alice had choosen ’head’ before Bob flipped his coin. If Bob
declares ’tail’, Alice agrees that she lost and tells Bob that he wins. Both trust the mechanism. In this
example, the Hashing function is necessary to build a trust in a random choice.

2.4.3 ** Random walk in an undirected graph

Let Gn = (Dn, E) be an undirected graph with e edges. UGAP, Undirected Graph Accessibility Problem, is a
decision problem defined as:

A. Input: An undirected graph and two nodes s and t.

Output: 1 if there is a path between s and t , 0 otherwise.

It is also known as GAP, Graph Accessibility Problem, in the case when the graph is symmetric. It is
computable in polynomial time because there are P algorithms to compute a path between two nodes s and
t. It is also in the class NL because UGAP is a restriction of GAP, an NL-complete problem. Is this problem
in the class L? The answer to this question is not presently known. Let us show, however, that there exists a
probabilistic algorithm in space O(log n), i.e. that UGAP is in the class RL. We will analyze a random walk
from s which will eventually terminate in t on a positive instance.

Probabilistic algorithm for UGAP.

Iterate k times the procedure.

Let u := s, i := 1.
While i < 2.n3

{ Consider the edges whose origin is u.
Select a random edge (u, u′) with a uniform distribution1.
u := u′ , i := i+ 1. If u = t, then UGAP = 1.}

UGAP = 0.

1If there are m edges, each one is selected with the probability 1/m.

17

The space requirement of this algorithm consists of two registers, one to code u an arbitrary node in a
graph with n nodes and the other for the integer i whose value is less than 2n3. Both use O(log n) bits. Let
us show now that a random walk of length O(n3) has a probability greater than 1

2 to find t if there exists a
path between s and t.

The proof uses some classical results on Markov chains [10] to estimate the average time T (i) necessary to
visit all the nodes from a given node i. This average time T (i) will be bounded by O(n3). We will conclude
that a random walk of length greater than T (i) will have a probability greater than 1

2 to reach t if there
exists a path from s to t.

The previous algorithm defines a Markov process with a transition matrix A, such that ai,j is the
probability to reach the node i from the node j. We can then compute A , A2,...Ak. The matrix Ak gives
the probability to reach a node i from a node j after k steps. The stationary probabilities if they exist, are
defined as the limit probabilities on each of the nodes and are represented by the vector π such that:

A.π = π

where
∑n
i=1 π(i) = 1. If d(i) is the degree of the node i, then

π(i) =
d(i)

2e

where 2e is the number of edges (i, j) ∈ E. The previous equation admits a unique solution, and this last
expression is a solution. A classical result on Markov chains is: if the chain is irreducible (the graph G is
connected), finite and aperiodic, then π is unique.

Definition 4 Let t(i, j) the expected number of transitions to reach j from i and T (i) the expected number
of transitions necessary for a random path to reach all the nodes from i.

T (i) is the inverse of the stationary probability π(i) and T (i) = 2e
d(i) . For an edge a, let f(a) the number

of times a random walk crosses the edge a and IE(f(a)) the expectation of this random variable, i.e. the
average number of crossing of the edge a. We also use the fact that:

IE(f(a)) =
1

2e

This expectation is also called the stationary frequency of an edge and is independent of the edge considered.

Lemma 1 If i and j are two adjacent nodes of G , then t(i, j) + t(j, i) ≤ 2e.

Proof : If i and j are adjacent nodes, t(i, j) + t(j, i), the average number of transitions for a random path from i

towards j and back is 2e times E, the expected number of occurrences of an edge a. This expectation is independent

of the edge a from the previous remark. So t(i, j) + t(j, i) = 2e.E. Consider the edge a = (i, j). The expectation of

the number of appearances of this edge, written Ea, is less than 1, because numerous paths from i to j and back do

not follow this edge2. Therefore t(i, j) + t(j, i) ≤ 2e.

From this lemma, we can deduce that if d(i, j) is the distance between i and j i.e. the number of edges of
the shortest path between i and j, then

t(i, j) + t(j, i) ≤ 2e.d(i, j)

Lemma 2 T (i) ≤ 2e.(n− 1).

2If we need to take this edge a, it is called an isthmus, and Ea = 1.

18

Proof : Let H be a spanning tree for the graph G. To explore all the nodes of G from a node s, it is necessary to
cross all edges e of H in both directions. Therefore,

T (i) ≤
∑

(j,j′)∈H

(t(ij , ij′) + t(ij′ , ij))

From the previous lemma, we conclude:
T (i) ≤ 2e.(n− 1)

Notice that e < n2 and so T (i) < 2.n3.

Theorem 1 The problem UGAP is in the class RL.

Proof : Generate a random path from s of length 2.n3 + 1. The probability to find t, if there exists a path between
s and t is greater than 1

2
+ ε.

If there is no path between s and t, this procedure does not make any error. If there is a path, we repeat this

procedure k times, the rate of error is less than 1/2k, and we obtain an RL algorithm.

2.5 **Important inequalities

An essential tool for probabilistic algorithms is to bound the possible error they could make. In general, we
want to bound the probability that we deviate from a correct unknown value.

2.5.1 Markov

Prob[X ≥ a] ≤ IE[X]/a

Prob[X ≥ a.IE[X]] ≤ 1/a

2.5.2 Chebyschev

Prob[X − IE[X] ≥ a] ≤ V ar(X)/a2

V ar(X) = IE[(X − IE[X])2]

2.5.3 Chernoff-Hoeffding

Hoeffding is the case of bounded variables Xi. We select n independent variables X1, X2, ...Xn. Let

Y =

∑
i=1...nXi

n

Prob[Y − IE[Y] ≥ t] ≤ e−2tn2

19

20

Chapter 3

Hadoop: Distributed File System

A first approach to Bigdata is to imagine more processors in order to speed the computations.. Given N
processors, the goal is to process the data N times faster. It is only possible for very limited problems.

Another requirement is to improve the reliability. We distribute the data on different disks and different
sites, to assure a better reliability. If 10% of the sites are down, the whole system still works and is only 10%
slower.

We first describe the file HDFS file system, then the MapReduce approach and finally consider a hard
example for MapReduce, the classical edit distance on strings.

3.1 HDFS

Each file is decomposed in blocks and each block is duplicated on several nodes representing some independent
disk storage as in Figure 3.1.

Fichier	
 décomposé	
 en	
 blocs	

Chaque	
 bloc	
 est	
 dupliqué	
 sur	
 plusieurs	
 noeuds	

noeud	

maitre	

Hadoop:	
 HDFS	

Figure 3.1: Nodes storing blocks of a file

When a node fails, the master node can still recover the file. In our example, we duplicate each block
twice. If 1 node fails, we recover all the files. If we duplicate each block d times, we tolerate d− 1 failures.

21

3.2 Map-Reduce

Suppose a large piece of data x can be decomposed into a partition x1, x2,xk where each xi is located on a
specific processor. We could apply the same function map to all the xi, then exchange some information
between the processors. Then we apply the same function reduce on all the processors, and finally assemble
the result, as in the Figure 3.2. The information is represented as pairs < k, v > for keys, values.

Figure 3.2: MapReduce implementations

Typical examples are:

• Hamming distance between two strings. Given two large strings x, x′ of size n, the Hamming distance
is the number D of positions i such that xi 6= yi. The relative Hamming distance d is D/n and is best
understood as a percentage such as 2% or 10%.

If we partition each string x into contiguous segments of length n/k, i.e. x = x1.x2,xk, we can assign
each xi to each processor i. The map function computes the local Hamming distance. The Reduce
function makes the sum and normalizes the value.

• Words counting. A given text can be partitioned as in the previous example. The map function
computes a set of (key, value) where the key is a word and the value is the number of occurrences of
the word in each part of the text. We reduce by taking the sum of the values for a given word. The
final result makes a similar operation.

3.3 A hard example: the edit distance

The classical edit distance on words is a standard measure between two words w and w′. An edit operation is
a deletion, an insertion or a modification of a letter. The absolute edit distance is the minimum number of
edit operations to transform w into w′ and the relative edit distance, dist(w,w′), is the absolute edit distance
divided, by Max(|w|, |w′|). We mainly use the relative distance, a value between 0 and 2.

The edit operations are:

• Deletion of a has cost 1,

• Insertion of a, has cost 1,

• Modification of a into b has cost 1,

An additional operation is a move : it selects a factor (subword), suppress it and insert it at some other location,
at the cost of 1, often called cut/pace. The edit distance with moves, distm(w,w′), is the generalization when
this extra operator can be used.

22

Two words w,w′ are ε-close if dist(w,w′) ≤ ε. The distance between a word w and a language L of timed
words is defined as dist(w,L) = Minw′∈Ldist(w,w

′).

Examples: let w1 = aaabbbba and w2 = bbbbaaaa. Then dist(w,w′) = 6/8 = 3/4 whereas distm(w,w′) =
1/8.

The edit distance between two words w1, w2 is computable in polynomial time. Let A(i, j) be the array
where w1 appears on the top row (i = 1) starting with the empty character ε, w2 appears on the first column
starting with the empty character ε as in Figure 3.3, where w1 = aba and w2 = aab. The value A(i, j) for
i, j > 1 is the edit distance between the prefix of w1 of length j − 2 and the prefix of w2 of length i− 2. Let
∆(i, j) = 0 if the letter symbols are identical, 1 otherwise. It is the edit distance between two letters.

For i, j > 1, there is a simple recurrence relation between A(i, j), A(i− 1, j), A(i, j− 1) and A(i− 1, j− 1),
which reflects the 3 possible transformations: deletion of w1(i− 2), deletion of w2(j − 2) or edition of the last
letters. Hence:

A(i, j) = Min{A(i, j − 1) + w1(i− 2), A(i− 1, j) + w2(j − 2), A(i− 1, j − 1) + ∆(i, j)}

In the example of Figure 3.3, the timed edit distance is 2, and we can trace the correct transformations
by tracing the Minimums for each A(i, j):

ε	
 a	
 b	
 a	

ε	
 0	
 1	
 2	
 3	

a	
 1	
 0	
 1	
 2	

a	
 2	
 1	
 1	
 1	

b	
 3	
 2	
 1	
 2	

w1	

w2	

Figure 3.3: Classical array A(i, j) for the edit distance between w1 = aba and w2 = aab.

The edit distance is can only be solved in time O(n2) and Hadoop will not help. There are very few
problems where Hadoop can provide a significant gain.

23

24

Chapter 4

Property Testing

In the case of a decision problem, i.e. the output is 0 or 1, the probabilistic approximation provides a first
approach. We want a weaker approximation, in order to consider algorithms which just sample the data and
provide useful approximations. The ideal situation is to fix some parameter ε and on an input of size n admit
a number of samples which only depends on ε but not on n and a time complexity which only depends on ε.
If it is not possible, we may have a number of samples O(

√
n), which is sublinear. In both cases, we do not

need to read the entire input.

Given a distance between inputs, an ε-tester for a property P accepts all inputs which satisfy the
property and rejects with high probability all inputs which are ε-far from inputs that satisfy the prop-
erty. Inputs which are ε-close to the property determine a gray area where no guarantees exists. These
restrictions allow for sublinear algorithms and even O(1) time algorithms, whose complexity only depends on ε.

Approximate Decision

Separation

ε-Separation

P

Not P

ε-far from P

Figure 4.1: The Property Testing schema.

Let K be a class of finite structures with a normalized distance dist between structures, i.e. dist lies in
[0, 1]. The structure K can be word, a tree, a graph or a more general structure.

25

For any ε > 0, we say that U,U ′ ∈ K are ε-close if their distance is at most ε. They are ε-far if they are not
ε-close. In the classical setting, satisfiability is the decision problem whether U |= P for a structure U ∈ K and
a property P ⊂ K. A structure U ∈ K ε-satisfies P , or U is ε-close to K or U |=ε P for short, if U is ε-close
to some U ′ ∈ K such that U ′ |= P . We say that U is ε-far from K or U 6|=ε P for short, if U is not ε-close to K.

Definition 5 (Property Tester [7]) Let ε > 0. An ε-tester for a property P ⊆ K is a randomized
algorithm A such that, for any structure U ∈ K as input:
(1) If U |= P , then A accepts;
(2) If U 6|=ε P , then A rejects with probability at least 2/3.1

A query to an input structure U depends on the model for accessing the structure. For a word w, a query
asks for the value of w[i], for some i. For a tree T , a query asks for the value of the label of a node i, and
potentially for the label of its parent and its j-th successor, for some j. For a graph a query asks if there
exists an edge between nodes i and j. We also assume that the algorithm may query the input size. The
query complexity is the number of queries made to the structure. The time complexity is the usual definition,
where we assume that the following operations are performed in constant time: arithmetic operations, a
uniform random choice of an integer from any finite range not larger than the input size, and a query to the
input.

Definition 6 A property P ⊆ K is testable, if there exists a randomized algorithm A such that, for every
real ε > 0 as input, A(ε) is an ε-tester of P whose query and time complexities depend only on ε (and not on
the input size).

Property testing was introduced in [7], building on earlier notions of Program testing [4]. The main
definition is inspired by the IP and PCP complexity classes, as an attempt to have a probabilistic general-
ization of the class NP . It is a statistics based approximation technique to decide if either an input satisfies
a given property, or is far from any input satisfying the property, using only few samples of the input and a
specific distance between inputs. The idea of moving the approximation to the input was implicit in Program
Checking [3, 13], in Probabilistically Checkable Proofs (PCP) [2], and explicitly studied for graph properties
under the context of Property Testing [7].

The class of sublinear algorithms has similar goals: given a massive input, a sublinear algorithm can
approximately decide a property by sampling a tiny fraction of the input. The design of sublinear algorithms
is motivated by the recent considerable growth of the size of the data that algorithms are called upon to
process in everyday real-time applications, for example in bioinformatics for genome decoding or in Web
databases for the search of documents. Linear-time, even polynomial-time, algorithms were considered to
be efficient for a long time, but this is no longer the case, as inputs are vastly too large to be read in their
entirety.

4.1 Is a function linear? BLR Linearity Test

Let f : Fn2 → F2 be a boolean function. Such a function is linear if either property is satisfied:

• ∀x, y ∈ Fn2 f(x) + f(y) = f(x+ y)

• ∃a ∈ Fn2 f(x) = a.x, i.e. f(x) =
∑
i∈S xi for S ⊆ {1, 2, ...n}

1The constant 2/3 can be replaced by any other constant 0 < γ < 1 by iterating O(log(1/γ)) the ε-tester and accepting iff all
the executions accept

26

Notice that these 2 conditions are equivalent. Clearly the second condition implies the first. To show that
the first implies the second, use an induction on n. For n = 1, find a by setting x = 1. If f(1) = 1 then a = 1
otherwise a = 0. Assume the property true for n− 1. Find an by checking f(1, 0, ...0). Any x can be written
as (1, 0, ...0) + (0, x2, ...xn) or as (0, 0, ...0) + (0, x2, ...xn). We then apply the induction hypothesis and prove
the result.

Consider the approximate version of the linearity conditions:

• for most x, y ∈ Fn2 f(x) + f(y) = f(x+ y)

• ∃a ∈ Fn2 such that for most x f(x) = a.x, i.e. f(x) =
∑
i∈S xi for S ⊆ {1, 2, ...n}

It is interesting to note that the second condition implies the first and it is not obvious to prove the opposite,
i.e. the first condition implies the second. It is another motivation to introduce the BLR test.

Let K be the class of boolean functions f : Fn2 → F2 and let L the class of linear functions. The distance be-

tween two functions f, g is the number of inputs on which they disagree, i.e. #x:f(x)6=g(x)
2n = Prob[f(x) 6= g(x)].

Given a function f and a value i, it is natural to ask for f(i) and this is a query. Can we efficiently test if
f ∈ L or if f is ε-far from L ?

The answer is ”yes”, with the following test introduced by Blum, Luby and Rubinfeld in [4]:

BLR Test(f)
Input: f : Fn2 → F2

Repeat 3 times:
1. Generate uniformly and independently x, y ∈ Fn2 ,

2. Reject if f(x) + f(y) 6= f(x+ y),
Accept.

If f ∈ L , clearly f passes the Test with probability 1. We have to prove that if f is ε-far to a linear
function then Prob[f passes the test] ≤ c. Equivalently, by contraposition, If Prob[f passes the test] > c,
then f is ε-close to a linear function. We will show in theorem ?? that we can take c = 1− ε. It is a hard
part of the result, which we admit. The proof requires the use of Fourier Analysis.

4.1.1 Monotonicity Test *

Let f : Fn2 → {0, 1,r} be a discrete function. Such a function is monotone if:

f(0, x−i) ≤ f(1, x−i)

Monotonicity Test(f, t)
Repeat t times

1. Generate uniformly i ∈r {1, 2, ...n} and x−i ∈ Fn−1
2 ,

2. Reject if f(0, x−i) > f(1, x−i)
Accept.

Clearly, if f is monotone, it satisfies the Monotonicity Test with probability 1. The main question is to
bound t to insure that a function f which is ε-far from monotone is rejected with high probability.

27

Theorem 2 For t = Ω(n/ε), the Monotonicity Test rejects every function f which is ε-far from monotone.

Proof : Equivalently, let us show that the probability that the test rejects in one trial is at least ε/n when f
is ε-far. The number of possible edges of the hypercube is n.2n−1. The Tester selects an i, and an hyperplane Ai
separating the nodes with xi = 0 from the nodes xi = 1. Let αi be the number of edges which cut the hyperplanes
with f(0, x−i) > f(1, x−i). Then the Tester rejects with probability:∑

i αi

n.2n−1

Consider the following partial Corrector: for each edge e of the hypercube which cuts the hyperplane, if
f(0, x−i) > f(1, x−i), then switch the values of f . A case by case analysis shows that the new function fi has no more
errors than f on each hyperplane Aj , i.e. for j = 1, ...n, αj ≥ α′j . For every A1,An we make two modifications for
every edge with an error: hence f can be made monotone after modifying at most 2.

∑
i αi values. If f is ε-far from

monotone, then 2.
∑
i αi ≥ ε.2

n.

The probability to reject is
∑

i αi

n.2n−1 ≥ ε.2n−1

n.2n−1 = ε
n

.

4.2 Testing words

Consider the following operations on strings:

1. Modification of a letter

2. Insertion of a letter

3. Deletion of a letter

4. Move of a factor (substring), i.e. Cut/Paste

Given two strings w,w′, the absolute distance is the minimum number of operations (among some of the
4 possibilities we select) necessary to transform w into w′. The distance dist(w,w′) is the relative distance
divided by the maximum length of w,w′. Notice that dist is symetric ans satisfies the triangular inequality.

If we only take the Modification, we get the Hamming distance distH . If we take Modification, Insertion,
Deletion we get the Edit distance distE and if take all 4 operations we get the Edit distance with Moves
distM . Notice that:

distM (w,w′) ≤ distE(w,w′) ≤ distH(w,w′)

4.2.1 Testing Membership for the Edit distance with moves

Let ustatk(w) be the uniform statistics of order k, i.e. the k-gram of the word w. For a word w of length n
on an alphabet Σ, the vector ustatk(w) of dimension |Σ|k gives the density of the subwords ui of length k.
Let #u be the number occurrences of a subword u and u1, u2, ...u|Σ|k a lexicographic enumeration of the ui’s.

ustatk(w) =
1

n− k + 1
.


#u1

#u2

...
#u|Σ|k


We can also interpret ustatk(w) as the distribution over ui’s observed on a random position 1 ≤ i ≤ n−k+1

if u = w[i].w[i+ 1]...w[i+ k − 1].

28

As an example, for binary words, and k = 2, there are 4 possible subwords of length 2, which we take in
lexicographic order. Let Σ = {a, b} be the alphabet. For the word w = aaabbb, ustat2(w) = 1

5 (2, 1, 0, 2), i..e.
#aa = 2, and the first component is 2

5 . If we extrapolate to a word

w = aaaaaaaaaabbbbbbbbbb

then:

ustatk(w) =
1

19
.


9
1
0
9

 '


0.5
0
0

0.5


The distance between two vectors u and v is the L1 distance,

∑
i |u(i)− v(i)|. In the previous example

the distance is 1
2.19 + 1

19 + 1
2.19 = 2

19 ' 0.1. If we extrapolate to a word of length n, then the error would be
2

n−1 . But limn→∞
2

n−1 = 0.

For a regular expression, what is {ustatk(w) : w ∈ L(A)}? The answer is surprisingly simple: consider the
regular expression a∗ what is the limit of limn→∞ ustatk(w) when w ∈ a∗? In this case it is simple as:

ustatk(w) =


1
0
0
0

 = sa∗

for all k. The limit is identical. Similarly for b∗:

ustatk(w) =


0
0
0
1

 = sb∗

For the regular expression (ab)∗, if w ∈ (ab)∗ then:

ustat2(w) =


0

0.5 + ε
0.5− ε

0


as there is 1 more occurrence of ab, compared to ba, so ε ' 1/n if n is the length of w.

lim
n→∞

ustat2(w) =


0

0.5
0.5
0

 = s(ab)∗

Notice that for k = 3:

lim
n→∞

ustat3(w) =



0
0

2/3
0
0

1/3
0
0


29

Just imagine ababababab.... The only subwords of length 3 are aba and bab. In this case aba is twice more
frequent than bab.

For any word u, we can similarly compute limn→∞ ustatk(w) : w ∈ u∗. For the regular expression r1 : a∗.b∗,
we take the following approach: any valid word w has a λ1 proportion in a∗ and a λ2 proportion of b∗, such
that λ1 + λ2 = 1. Hence the ustatk(w) vector car be written as:

λ1.sa∗ + λ2.sb∗

as represented by the line joining the two points sa∗ and sa∗ in Figure 4.2.

This a general strategy: for the regular expression b∗.(ab)∗.(abb)∗, we first compute each limit for a given
k. We need to compute the vector associated to (abb)∗, as we already computed the previous vectors.

lim
n→∞

ustat2(w) =


0

1/3
1/3
1/3

 = s(abb)∗

Any valid word w for r2 : b∗.(ab)∗.(abb)∗ will have a statistical vector of the form:

λ1.sb∗ + λ2.s(ab)∗ + λ3.s(abb)∗

where
∑
i λi = 1, as indicated in Figure 4.2.

Membership	
 Tester	

S(a*)	

S((ab)*	
)	

	
 w	
 =abababbbbababab	
 	

	
 	
 r1=a*.b*	

	
 	
 r2=b*.(ab)*.(abb)*	

S(b*)	
 S((abb)*	
)	

ustat(w)	

Figure 4.2: Polytopes for the regular expressions r1 and r2

Given a regular expression r, we first construct the union of polytopes
⋃
i Pi associated with the regular

expression, as explained on these two examples. Assume we can compute the Euclidian distance dist of a

30

point x to a polytope in the statistical space. It generalizes the basic calculus for the distance dist between a
point and an hyperplane, and can be formalized as a linear program. We can then apply the following tester:

Tester T (w, r, ε)

1. Sample 1/ε2 factors u of length k = 1/ε of wn,

2. Construct ̂ustatk(w), i.e. the ustatk vectors on the
samples,

3. Accept if there is a polytope Pi such that

dist(̂ustatk(w)) ≤ ε

In the example of Figure 4.2, the distance between w = abababbbbababab and r2 : b∗.(ab)∗.(abb)∗ is 2/15.
First move the last ababab in front, and remove the last b. If ε ' 1/8, the tester takes 64 samples of length 8:
it would only make sense if w is very large, i.e. of length 106 for example. Based on only 64 samples, we
validate w or not.

It is simple to see that if w is valid for r2, the Tester accepts with probability 1. It is slightly more difficult
to see that if w is ε-far of r2, the Tester will reject with high probability. The argument uses the following:

• For each i, IE[̂ustatk(w)(i)] = ustatk(w)(i). Hence we can use a Chernoff’s bound to have a small error

probability for the difference between ̂ustatk(w)(i)− ustatk(w)(i) > t. With a union bound we conclude

that ̂ustatk(w)(i) and ustatk(w)(i) are close.

• The distance to a polytope is approximately the edit distance with moves.

• Hence if w is far from r, it will be far from any polytope Pi and we will reject with high probability,

given only ̂ustatk(w).

4.2.2 Testing Membership for the Edit distance

Given an automaton A, let L(A) be the language accepted. A Tester for the Edit distance has the following
structure. We separate the strongly connected components C1....Cp and the possible paths Π = C1....Cl from
C1 which contains the initial state to Cl which contains a final state, such that Ci+1 is reachable from Ci.
We first construct a Tester T1 for one component C, then a Tester for Π = C1....Cl and finally a tester for L(A).

Tester T1(w,C)

1. Sample a factor u of length k = 2.(m+ 1)/ε of wn,

2. If u is C-compatible Accept else Reject.

Tester for a Component C

We say that w is C-compatible if there is run for w in C, i.e. there are two states q, q′ such that we reach q′

from q reading w. We want to show that if w is ε-far from C, there are many incompatible factors u of some
length. We conceive the following Corrector for C.

31

Start w in some state q which maximizes the length of a run. At this point we have a cut: we remove the
letter, and start again from another state q1 which maximizes another run. We then introduce a link, a small
word of length less than m to connect q′ with q1. We made at most m+ 1 Edit operations. Let h the number
of cuts in w. We write

w = w1 |1 w2 |2 w3 3| ... |h wh+1

for a word with h cuts.

Lemma 3 Let C have at most m states. If w has h cuts, then it is h.(m+ 1) close to C.

Proof : We just correct w with the sequence of modifications along the cuts, defined by the previous Corrector.

By contraposition, if w is ε-far from C, we expect many cuts. Observe that if a sample u contains 2 cuts,
it is necessarly incompatible, i.e. a witness that w is not accepted by C, for any initial and final state. We
need to bound the size of a sample so it occurs with a constant probability.

Let αi = |{wj : 2i−1 ≤ |wj | < 2i}| where |wj | is the length of wj . By definition h =
∑
i αi is the number

of cuts. We need to find a bound il such that: ∑
0≤i≤il

αi ≥ ε.n

It will guarantee that samples of length k = 2il will contain many incompatible factors.

Lemma 4 If w is ε-far from C, then the probability to find an incompatible factor u of length 2.k = 8.(m+1)/ε
is greater than c = 3.ε/8.(m+ 1).

Proof :
We need to estimate

∑
0≤i≤il

αi when we choose k = 2il . First let us estimate β =
∑
i≥il

αi, i.e. for large i. There

are at most n/2il feasible wj of length larger than 2il , i.e. β ≤ n/2il . Hence∑
i

αi =
∑

0≤i≤il

αi + β ≥ ε.n/(m+ 1)

∑
0≤i≤il

αi ≥ ε.n/(m+ 1)− β ≥ ε.n/(m+ 1)− n/2il

Let k = 4.(m+ 1)/ε = 2il , or il = log(4.(m+ 1)/ε). Then∑
0≤i≤il

αi ≥ 3.ε.n/4.(m+ 1)

Hence:

β =
∑
i≥il

αi ≤ n/2il ≤ ε.n/4.(m+ 1)

Let us estimate the probability to have two consecutive small wj , wj+1 in a sample u which starts in wj . If this
probability is large, it will guarantee that a sample of length 2.k starting in wj is incompatible. We bound the
probability that we hit a small wj such that the following wj+1 is large.

Prob[|wj | ≤ k] ≥ 3.ε/4.(m+ 1)

It is the weight of the small blocks: in the worst case they are of length 1 and their weight is 3.ε/4.(m+ 1). Consider
now, the probability that the random u starts on a small wj followed by a large wj+1:

Prob[|wj+1| > k | |wj | ≤ k]

For this event, a large block of size at least 4.(m+ 1)/ε follows a small block: there are only ε.n/4.(m+ 1) small
blocks which could be used. There remains ε.n/2.(m+ 1) small blocks. Let us call A the set of all positions determined

32

by the small blocks followed by the large blocks. The remaining ε.n/2.(m+ 1) small blocks occupy at least n− | A |
positions. Hence:

Prob[|wj+1| > k | |wj | ≤ k] ≤ Prob[wj ∈ A]/2 ≤ (1− ε/2.(m+ 1))/2 = 1/2− ε/4.(m+ 1) ≤ 1/2

By contraposition:

Prob[|wj+1| ≤ k | |wj | ≤ k] ≥ 1/2

We can then bound the probability that a sample of weight 2k is incompatible:

Prob[a sample u of weight 2k is incompatible] ≥ Prob[|wj | ≤ k].P rob[|wj+1| ≤ k | |wj | ≤ k]

≥ (3.ε/4(m+ 1)).1/2 ≥ 3.ε/8.(m+ 1)

Hence we take c = 3.ε/8.(m+ 1).

We can conclude:

Theorem 3 The Tester T1 accepts if w ∈ L(A) and rejects with probability 3ε/4(m+ 1) if w is ε-far from
L(A)

Tester for a sequence Π of compatible connected components

Consider the following decomposition for Π = C1, C2, as in Figure 4.3, which we can generalize for an arbitrary
Π: start in all possible states of C1 wich are accessible from the initial state and take the longest compatible
prefix w1. It determines a cut of weight c. We continue in a similar way until we reach cuts of total weight at
least ε.n/2 for C1. We then switch to cuts for C2. The position of the last cut for C1 determines a border
between C1 and C2, set by the intervals I1 and I2. If there are cuts for C1 of weight less than ε.n/2 , or cuts
for C1 of weight ε.n/2 and cuts for C2 of weight less than ε.n/2 , then the word wn is ε-close to the regular
expression associated with Π = C1, C2.

Cuts for C1
Cuts for C2

I1 I2

Figure 4.3: A possible decomposition of wn into feasible components for Π = C1, C2.

We say that two independent samples u1 < u2 are Π = C1.C2 compatible if u1 is compatible for C1 or C2

or C1.C2 and u2 is compatible accordingly. We generalize to Π = C1....Cl.

Tester T2(w,Π)
Π = C1....Cl

1. Sample l independent factors u1 < u2 < ... < ul of length k =
2.(m+ 1)/ε of wn,

2. If u1 < u2 < ... < ul is Π-compatible Accept else Reject.

If wn is ε-far for Π, there exists such a decomposition, given as (I1, I2) where there are heavy cuts, i.e.
of weight greater than ε.n/2, for C1 and C2. We then show that there are many samples u of a some finite
weight which contain a wi for the C1 decomposition and a wj for the C2 decomposition. This decomposition
generalizes to Π = C1....Cl by taking cuts for Ci1 of weight ε.n/l, cuts for Ci2 of weight ε.n/l until possible

33

cuts for Cl of weight ε.n/l.

If wn is ε-far from Π = C1, C2, we know that there are many samples u’s of weight k incompatible for C1

in the interval I1 and many samples u’s of weight k incompatible for C2 in the interval I2. The density of the
incompatible samples is greater than 3.ε.n/4.(m+ 1). We can then conclude that the Tester will reject with
constant probability.

Lemma 5 If wn is ε-far from Π = C1, C2 then the Word Tester rejects with constant probability.

Proof : Assume wn is ε-far from Π = C1, C2. Consider two samples u1 < u2 taken independently. If u1 is
incompatible for C1 and u2 is incompatible for C2, then the Tester rejects. Hence:

Prob[Tester rejects] ≥ Prob[u1 incompatible for C1 ∧ u2 incompatible for C2] ≥

Prob[(u1 ∈ I1 ∧ u1 incompatible for C1) ∧ (u2 ∈ I2 ∧ u2 incompatible for C2] ≥
These two events are independent, hence we can rewrite the expression as:

Prob[(u1 ∈ I1 ∧ u1 incompatible for C1)].P rob[(u2 ∈ I2 ∧ u2 incompatible for C2]

But Prob[(u1 ∈ I1 ∧ u1 incompatible for C1)] ≥ (ε/2).(3.ε/4.(m+ 1)) and similarly for u2. Hence:

Prob[Tester rejects] ≥ (3.ε2/8(m+ 1))2

This decomposition generalizes to Π = C1....Cl by taking cuts for Ci1 of weight ε.n/l, cuts for Ci2 of
weight ε.n/l until possible cuts for Cl of weight ε.n/l.

Notice that another Tester T ′2(w,Π) could be used: given u1 < u2 < ... < ul, use T1(ui, Ci), i.e. if each ui
is compatible for Ci for i = 1, ...l. It would accept of one of test T1 accepts and reject otherwise.

Tester for a L(A)

We can now use the previous Tester T2 and have a Tester T3 for L(A). A sequence Π = C1....Cl is essential if
the initial state is in C1 and some initial state is in Cl.

Tester T3(w,L(A))

For all essential Π = C1....Cl of the automaton:

1. If T2(w,Π) Rejects, Reject,

Accept.

4.3 Testing Graphs

In the context of undirected graphs [7], the distance is the (normalized) Edit Distance on edges: the distance
between two graphs on n nodes is the minimal number of edge-insertions and edge-deletions needed to modify
one graph into the other one. Let us consider the adjacency matrix model. Therefore, a graph G = (V,E) is
said to be ε-close to another graph G′, if G is at distance at most εn2 from G′, that is if G differs from G′ in
at most εn2 edges.

In several cases, the proof of testability of a graph property on the initial graph is based on a reduction
to a graph property on constant size but random subgraphs. This was generalized for every testable graph
properties by [8]. The notion of ε-reducibility highlights this idea. For every graph G = (V,E) and integer
k ≥ 1, let Π denote the set of all subsets π ⊆ V of size k. Denote by Gπ the vertex-induced subgraph of G on
π.

34

Definition 7 Let ε > 0 be a real, k ≥ 1 an integer, and φ, ψ two graph properties. Then φ is (ε, k)-reducible
to ψ if and only if for every graph G,

G |= φ =⇒ ∀π ∈ Π, Gπ |= ψ,

G 6|=ε φ =⇒ Pr
π∈Π

[Gπ 6|= ψ] ≥ 2/3.

Note that the second implication means that if G is ε-far to all graphs satisfying the property φ, then with
probability at least 2/3 a random subgraph on k vertices does not satisfy ψ.

Therefore, in order to distinguish between a graph satisfying φ to another one that is far from all graphs
satisfying φ, we only have to estimate the probability Prπ∈Π[Gπ |= ψ]. In the first case, the probability is 1,
and in the second it is at most 1/3. This proves that the following generic test is an ε-tester:

Generic Test(ψ, ε, k)

1. Input: A graph G = (V,E)

2. Generate uniformly a random subset π ⊆ V of size k

3. Accept if Gπ |= ψ and reject otherwise

Proposition 1 If for every ε > 0, there exists kε such that φ is (ε, kε)-reducible to ψ, then the property φ
is testable. Moreover, for every ε > 0, Generic Test(ψ, ε, kε) is an ε-tester for φ whose query and time
complexities are in (kε)

2.

In fact, there is a converse of that result, and for instance we can recast the testability of c-colorability [7, 1]
in terms of ε-reducibility. Note that this result is quite surprising since c-colorability is an NP-complete
problem for c ≥ 3.

Theorem 4 ([1]) For all c ≥ 2, ε > 0, c-colorability is (ε,O((c ln c)/ε2))-reducible to c-colorability.

If for every ε > 0, there exists kε such that φ is (ε, kε)-reducible to ψ, then the property φ is testable.
Moreover, for every ε > 0, Generic Test(ψ, ε, kε) is an ε-tester for φ whose query and time complexities are
in (kε)

2.

In fact, there is a converse of that result, and for instance we can recast the testability of c-colorability [7, 1]
in terms of ε-reducibility. Note that this result is quite surprising since c-colorability is an NP-complete
problem for c ≥ 3.

Theorem 5 ([1]) For all c ≥ 2, ε > 0, c-colorability is (ε,O((c ln c)/ε2))-reducible to c-colorability.

4.4 Testing vs. Learning

There are two related concepts:

• Testing, i.e. approximately deciding a property: in this case, we must decide if an input x satisfies the
property or is ε−far from the property,

• Approximating the property: if f is the boolean function associated with the property, finding another
boolean function g which is ε−close to f .

Clearly, if we approximate the property, we can also test but the converse is not necessarly true.

35

4.4.1 Learning a linear Classifier

A Classifier may take data labelled with the name of a class and outputs linear functions which best separate
the classes. In the case of two classes, and two dimensional data, we have labelled data (xi, yi, 0) if 0 is the
label of the first class and (xi, yi, 1) if 1 is the label of the second class.

A linear regression finds the linear function a.x+ b.y + c = 0 which minimizes the global error, defined as
the sum of the distances from the points to the line, the Ordinary least squares.

PAC-learning is the generalization to words, graphs and general data.

4.4.2 Learning a Community in a graph

In this case, we don’t have labelled data as input. We want to find the dense subgraphs or clusters. It is
often called unsupervised learning. The problem is particularly important on streams of edges, when we can
not store the entire graph. We will introduce some simple solutions for this problem.

36

4.5 Exercices

1. A function f : Fn2 → F2 is a Dictator function if f = xi for some i ∈ {1, 2, ...n}, i.e. a special linear
function. Construct a Tester for this property.

2. Recall that a function f is k-linear if there is S such that |S| = k and f(x) =
∑
i∈S xi =

⊕
i∈S xi. A

function f is a k-junta if there is S such that |S| = k and f(x) = f(y) whenever xi = yi for i ∈ S.
Construct a tester for this class of functions and show a lower bound Ω(k) lower bound for the number
of queries.

37

38

Chapter 5

Streaming

Streaming algorithms have become very important, as data from many fields can be accessed as a stream:
astronomy, medicine, social networks,... We are interested in algorithms which read data step by step and
maintain a small memory, if possible constant or poly(log) in the size of the stream.

We first consider a stream s of numerical values xi ∈ {1, 2, ...n}, then a stream of edges e = (vi, vj) in a
graph G = (V,E) and finally balanced words.

5.1 Moments in a stream of values

Let U = {1, 2, ...n} be a set of elements and a data stream sm = x1, ...xm of elements of U . Consider the
frequency fi ∈ {0, 1, 2, ...m} the number of occurrences of the element i in the stream.

The k-th frequency moment Fk =
∑
j∈U f

k
j . Notice that F0 is the number of distinct elements in the

stream, F1 = m, and as k increases we give more weight to the most frequent element. It is then natural to
define F∞ = Maxjfj .

5.1.1 Reservoir Sampling

A classical technique, introduced in [14] is to sample each new element xn of a stream s with some probability
p and to keep it in a set S called the reservoir which holds k tuples. It also applies to values with a weight.
Let s = x1, x2,xn be the stream and let Ŝn be the reservoir at stage n. We write Ŝ to denote that S is a
random variable.

k-Reservoir sampling: A(s)

• Initialize Sk = {x1, x2,xk},

• For j = k + 1,n, select xj with probability k/j. If it is selected, replace a random element of the
reservoir (with probability 1/k) by xj .

Lemma 6 Let Ŝn be the reservoir at stage n. Then for all n > k and 1 ≤ i ≤ n:

Prob[xi ∈ Sn] = k/n]

Proof : Let us prove by induction on n. The probability at stage n+ 1 that xi is in the reservoir Prob[xi ∈ Ŝn+1] is
composed of two events: either the tuple xn+1 does not enter the reservoir, with probability (1− k/n+ 1) or the tuple
xn+1 enters the reservoir with probability k/(n+ 1) and the tuple xi is maintained with probability (k − 1)/k. Hence:

Prob[xi ∈ Ŝn+1] = k/n((1− k/(n+ 1) + k/(n+ 1) .(k − 1)/k)

39

Prob[xi ∈ Ŝn+1] = k/n((n+ 1− k)/(n+ 1) + (k − 1)/(n+ 1))

Prob[xi ∈ Ŝn+1] = k/(n+ 1)

Interestingly, imagine we are interested in the most recent data. At every step some values are outdated
and leave the reservoir and new values appear. How do we generalize the reservoir into a Window Reservoir?
Some other techniques based on hashing are possible, but the strict generalization of the classical reservoir is
an interesting open problem.

5.1.2 Morris Algorithm for estimating F1

A counter needs O(log n) space. Could we use less space? Morris answered this question in 1977, with a
surprising technique.

Assume n = 2i, and let us store i. As n increases we increase i with probability 1/2i.

Given i (which requires O(log log n) space to store), we estimate n as Z = 2i. If n = 2j , then E[Z] = n.

5.1.3 Estimating F0

Let h be a random function h : {1, 2, ...M} → {1, 2, ...M}.

Algorithm A2(sm):

• Let h be a random function.

• Min = h(x1)

• At every step, reading xi, let Min = MIN{Min, h(xi))}

Return X = M/Min

Intuitively, the expected value if n = 1 of Min is M/2 hence X = 2. If n = 2, then the expected value of
Min is M/3 hence X = 3. As n increases the estimator is essentially unbiased.

MinHash is a variation to estimate the Jaccard Similarity between two streams. Assume A is the domain
of the first stream and B is the domain of the second stream. Let J(A,B) = |A ∩B|/[|A ∪B| the Jaccard
Similarity. It is the probability that X(A) = X(B). It can be approximated by the rate of common minimum
values. Keep the 100 smallest values of h(xi) in both streams A and B. If there are 10 values which are in
common, then J(A,B) is approximately 10%.

Count-MinSketch [?] is a generalization to approximate the different frequencies. Consider a matrix A(i, j)
with w columns and d rows. Each row i is associated with hash function hi : U = {1, 2, ...n} → {1, 2, ...d}.
Every time we read xk, we compute

h1(xk), h2(xk),hw(xk)

and we increase each value A(i, hi(xk)) by 1. If we want the frequency of xk, we approximate it by the
Mini{A(i, hi(xk))}. If we take w = 3/ε and d = log 1/δ, we approximate the frequency within an additive
factor ε with probability 1− δ.

40

5.1.4 Basic estimator for F2

The approach is to find an estimator whose expectation is F2 and whose variance is bounded.

• Le h: U → {−1,+1} be a function which assigns a random sign to a an element of U .

• Z = 0. For each j in the stream, Z = Z + h(j).

• Return X = Z2

Z =
∑
j fj .h(j).

Analysis

Lemma 7 IE[X] = F2

Proof :
IE[X] = IE[Z2]

IE[X] = IE[(
∑
j

fj .h(j))2]

IE[X] = E[
∑
j

f2
j + 2

∑
j<l

fj .fl]

IE[X] = F2 +
∑
j<l

E[
∑
j<l

fj .fl]

IE[X] = F2

Let Y =
∑

tXt

t , i.e. the average of t independent trials.

Lemma 8 V ar[Y] = V ar[X]
t

Proof :
IE[X] = IE[Z2]

Lemma 9 IE[V ar[X]] ≤ 2.F 2
2

Proof :
V ar[X] = IE[X2]− (IE[X])2

IE[X2] = IE[(
∑
j

fj .h(j))4]

Most of the terms h(j1).h(j1).h(j1).h(j1) have a 0 expectation. Hence:

IE[X2] = IE[(
∑
j

fj .h(j))4] = IE[
∑
j

f4
j .h(j)4 + 6

∑
j<l

f2
j .f

2
l .h(j))2.h(l)2]

IE[X2] =
∑
j

f4
j + 6

∑
j<l

f2
j .f

2
l

F 2
2 =

∑
j

f4
j + 2

∑
j<l

f2
j .f

2
l

Hence IE[X2] ≤ 3.F 2
2 .

We can then guarantee the quality of the approximation of Y .

Lemma 10 If t = 2
ε2.δ , then

Prob[Y ∈ [(1− ε).F2, (1 + ε).F2]] ≥ 1− δ

Proof : Recall Chebyshev’s inequality: Prob[|Y − F2| ≥ c] ≤ V ar(Y)

c2
.

In our case c = ε.F2, and using lemma 8.3, we get:

Prob[|Y − F2| ≥ ε.F2] ≤ V ar(Y)

(ε.F2)2
≤ 2.F2

2
t.(ε.F2)2

Hence t = 2
ε2.δ

.

41

5.2 Graph properties from a stream of edges

Let G(V,E) be a symmetric graph with n vertices and m edges. Let di the degree of node i.

5.2.1 Graph properties by sampling [?]

Consider a connected graph and an ergodic random walk. It has a stationary distribution π. For this
distribution Prob[x = vi] = di/D where di is the degree of the node vi. Suppose we take r nodes with the
distribution π: {x1, x2, ...xr}. Let Yj,j′ = Yj,j′ = 1 if xj = xj′ and 0 otherwise.

Consider the following variables which only depend on the samples. Let:

ψ1 =
∑

i=1,...r

di

ψ−1 =
∑

i=1,...r

1/di

C =
∑
j 6=j′

Yj,j′

The variable C measures the number of collisions. Let R = ψ1.ψ−1 − r.

Algorithm to estimate n. Maintain R and C. Output n̂ = R/C.

Lemma 11 If r ≥ f(ε, δ), then Prob[n̂ ∈ [(1− ε).n, (1 + ε).n] ≥ 1− δ.

Proof : Let us estimate IE[C] and IE[R]:

IE[R] = IE[ψ1.ψ−1 − r] = IE[
∑

i=1,...r

di.
∑

i=1,...r

1

di
− r] = IE[

∑
i 6=j

di
dj

]

Recall Chebyshev’s inequality: Prob[|R− IE[R]| ≥ c] ≤ V ar(R)

c2
.

5.2.2 Graph properties in a stream

Consider a stream of edges, defining at any time t a graph Gt. Notice that we can sample edges uniformly,
with a reservoir sampling and obtain a distribution of nodes where each node has a probability to be chosen
proportional to its degree.

Uniform Spanning trees

The problem of generating uniform Spanning Trees has beed studied by Aldous and Broder [?] and recent
studies on the approximation of the effective resistance of edges [?] have renewed some interest in the problem.
Given an edge e ∈ E(G) the graph G/e is obtained by contracting the edge e while G\e is obtained by
deleting the edge e.

The output of a randomized algorithm A is denoted by A(G). Given a spanning tree T and a cycle C,
the cycle obtained by adding the edge e to T is denoted by C(e, T). The length of the cycle is denoted as
|C(e, T)|. The number of spanning trees in G is denoted by Z(G). The effective resistance for edge e ∈ G
is denoted as R(e). It is well known that if T is a uniform spanning tree for G then Pr[e ∈ T] = R(e).
Pr[e ∈ T] = R(e). The sum of effective resistances

∑
eR(e) = n− 1. We use this well known identity:

Z(G).(1−Re) = Z(G\e)

42

Streaming Algorithm to construct a spanning tree T . Keep a spanning tree T at any time. When
a new edge e appears in the stream, detect if there is a cycle C in T + e. If there is no cycle, add e to T ,
otherwise break the cycle by removing a uniform edge of C, i.e. an edge of C with probability 1/|C|.

Let π a permutation of the edges. It is easy to see that the distribution of the spanning trees T may not
be uniform for a given π. We conjecture that it is close to the uniform distribution if we choose a uniform π,
i.e.

Probπ,r[T] ' 1/Z(G)

when r are the random choices of the Streaming Algorithm.

43

44

Chapter 6

Social Networks

Consider the following graphs:

• The nodes are the names of the characters in the novel Les Misérables. Two nodes u, v are adjacent if the
the names occur in the same sentence. For example, the sentence Comment se faisait-il que l’existence
de Jean Valjean eût coudoyé si longtemps celle de Cosette? generates an edge (JeanValjean,Cosette).

• The nodes are authors of scientific publications, the edges link two authors who co-publish the same
paper. For a publication with 3 authors, we generate 6 edges.

• The Facebook graph: the nodes are the users and an edge represents the friendship symmetric relation.

• The Twitter user graph: the nodes are the users and an oriented edge (u, v) exists if v follows u.

• The Twitter content graph: the nodes are the tags (@x or #y) and each tweet sent from @x which
contains #y,#z,@t generates 3 edges: (@x,#y), (@x,#z) and (@x,@t). If a tweet has 10 tags, it
generates 10 edges.

These graphs have very specific structures and in particular:

• The degree distribution is a power law,

• The diameter is small (usually less than 6)

• There are dense subgraphs, called clusters or communities.

• They evolve in time

The main questions concern the information we can extract from these dynamic graphs.

• Can we quantify the importance of a node? The Pagerank answers this question.

• Which nodes are central? The closeness centrality is a possible answer.

• Which clusters appear in the graph? The Community detection algorithms approximate the clusters.

• How do these parameters evolve in time?

There are several classical techniques if the graph is entirely known. A more challenging question is to
cluster the graphs when we read a stream of edges and do not store the entire graphs . Even more challenging,
is to cluster the dynamic graphs defined by the most recent edges.

45

6.1 Pagerank

Given a graph, we assign a probability measure to each node, in such a way that a random walk of a certain
length has the probability to reach the node i. The walk follows the edges of the graph with a uniform
distribution. When it reaches a sink, i.e. a node without outgoing edges, it chooses a new node with a
uniform distribution.

The Pagerank algorithm approximates this distribution, in a distributed way. There are many variations,
depending on the length of the walk, the number of distributed walks and the way to aggregate the results.
It is the technology which allowed Google to dominate the search industry in 1998.

6.2 Clusters of a given graph

There are several definitions of a cluster or community or dense subgraph. We consider a cluster of domain S
as a maximal dense subgraph which depends on a parameter γ. Let γ ≤ 1 and let E(S) be the multiset of
internal edges i.e. edges e = (u, v) where u, v ∈ S. A γ-cluster is a maximal subset S such that E(S) ≥ γ.|S|2.

Consider the symmetric graph of the Figure 6.1 and its adjancency matrix A:

A =


0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0



Modules	
 in	
 a	
 graph	

1	
 4	

2	

3	

5	

6	

Figure 6.1: Modular decomposition of a graph

46

6.2.1 Basics of linear algebra

Let us recall a few important ideas:

• The rank of a matrix is the largest set of independent rows. A row is dependent if it is a linear
combination of the other rows.

• Eigenvalues and eigenvectors.

Given a square matrix A, we consider a vector v and a scalar λ such that:

A.v = λ.v

Such a value λ is called an eigenvalue and the vector v is called an eigenvector. One method to compute
the eigenvalues is to express the characteristic polynomial of A, a polynomial in λ of degree n:

det(A− λ.I) = 0

where I is the identity matrix. The eigenvalues are complex values (in C) but for a large class of matrices,
called Positive Semi Definite, the values are reals and positive. Covariance matrices belong to this class.

The Python code, assuming an object la of the ” linalg” library (linear algebra) is:

w,v=la.eig(A)

The vector w gives the n eigenvalues. The matrix v gives the n eigenvectors represented as columns. For
example:

A =

(
2 1
0 1

)
The characteristic polynomial is λ2 − 3.λ+ 2 = (λ− 2).(λ− 1). The roots are real and are 1 and 2. To

find the eigenvector associated to λ = 2, we write:

A =

(
2 1
0 1

)
.

(
x
y

)
=

(
2x
2y

)
We are looking for vectors and we can always fix one of the coordinates. The equations are:

2x+ y = 2x

y = 2y

The second equation implies that y = 0, the first equation implies x is any value, for example 1. The
eigenvector is

v =

(
1
0

)
Similarly the equations for λ = 1 are:

2x+ y = x

y = y

The second eigenvector if we choose y = 1 is:

v′ =

(
−1
1

)
The python code to compute these eigenvectors and eigenvalues is:

47

import numpy as np

import scipy.linalg as la

A= np.array([[2,1],[0,1]])

w,v=la.eig(A)

print("Eigenvalues of A",w)

print("Eigenvectors of A \n",v)

Eigenvalues of A [2.+0.j 1.+0.j]

Eigenvectors of A

[[1. -0.70710678]

[0. 0.70710678]]

Notice that the second eigenvector is only proportional to the vector v′ =

(
−1
1

)
. The length of v′ is 2

whereas the length of

(
−0.707
0.707

)
is
√

2.

If the matrix is symmetric, the eigenvectors are orthogonal.

import numpy as np

import scipy.linalg as la

A= np.array([[2,1],[1,1]])

w,v=la.eig(A)

print("Eigenvalues of A",w)

print("Eigenvectors of A \n",v)

Eigenvalues of A [2.61803399+0.j 0.38196601+0.j]

Eigenvectors of A

[[0.85065081 -0.52573111]

[0.52573111 0.85065081]]

6.2.2 Spectral methods

The Laplacian matrix L = D −A where is the diagonal matrix where D(i, i) = degree(i).

A =


3 −1 −1 −1 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
−1 0 0 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2


The Laplacian is a Positive Semidefinite Matrix (PSD), and in particular its eigenvalues are real and

positive. In this example, the eigenvalues are:

4.56155281e+ 00 + 0.j,−5.83070714e− 16 + 0.j, 4.38447187e− 01 + 0.j,

48

3.00000000e+ 00 + 0.j, 3.00000000e+ 00 + 0.j, 3.00000000e+ 00 + 0.j

Notice that the smallest eigenvalue λ1 is 0, and the precision parameter makes it only close to 0. The
second eigenvalue is 4.38447187e− 01 + 0.j is important, and in particular the eigenvector. The eigenvectors
are the columns of the matrix:

A =


−0.6571923 0.40824829 0.26095647 −0.57735027 −0.30464858 0.1005645
0.18452409 0.40824829 0.46470513 0.28867513 −0.42497055 0.07701434
0.18452409 0.40824829 0.46470513 0.28867513 0.72961912 −0.17757884
0.6571923 0.40824829 −0.26095647 −0.57735027 −0.30464858 0.1005645
−0.18452409 0.40824829 −0.46470513 0.28867513 0.31819937 −0.7348447
−0.18452409 0.40824829 −0.46470513 0.28867513 −0.01355079 0.6342802


The second eigenvector corresponding to λ1 is the unit vector. The Laplacian is doubly stochastic, i.e. the
sums of the line values or the sums of the column values is always 0. The eigenvector for λ2 is

v2 =


0.26095647
0.46470513
0.46470513
−0.26095647
−0.46470513
−0.46470513


Notice that it splits the nodes into two parts according to the vector signs, finding the cut between the

two clusters. It is a general phenomenon.

6.2.3 Modules via the modularity matrix

The degree vector is d where d(i) is the degree of the node i.

d =


3
2
2
3
2
2


Let B = A− d.dt/2m be the modularity matrix:

B =


−0.64285714 0.57142857 0.57142857 0.35714286 −0.42857143 −0.42857143
0.57142857 −0.28571429 0.71428571 −0.42857143 −0.28571429 −0.28571429
0.57142857 0.71428571 −0.28571429 −0.42857143 −0.28571429 −0.28571429
0.35714286 −0.42857143 −0.42857143 −0.64285714 0.57142857 0.57142857
−0.42857143 −0.28571429 −0.28571429 0.57142857 −0.28571429 0.71428571
−0.42857143 −0.28571429 −0.28571429 0.57142857 0.71428571 −0.28571429


The eigenvalues and eigenvectors are:

1.73205081e+ 00 + 0.j − 1.73205081e+ 00 + 0.j1.03359129e− 16 + 0.j

−4.28571429e− 01 + 0.j − 1.00000000e+ 00 + 0.j − 1.00000000e+ 00 + 0.j

49


3.25057584e−01 6.27963030e−01 −4.08248290e−01 5.77350269e−01 1.94704069e−17 1.20649538e−17

4.44036917e−01 −2.29850422e−01 −4.08248290e−01 −2.88675135e−01 −5.43451954e−01 3.07079803e−01

4.44036917e−01 −2.29850422e−01 −4.08248290e−01 −2.88675135e−01 5.43451954e−01 −3.07079803e−01

−3.25057584e−01 −6.27963030e−01 −4.08248290e−01 5.77350269e−01 −8.44215958e−17 7.96494760e−17

−4.44036917e−01 2.29850422e−01 −4.08248290e−01 −2.88675135e−01 −4.52393604e−01 −6.36947403e−01

−4.44036917e−01 2.29850422e−01 −4.08248290e−01 −2.88675135e−01 4.52393604e−01 6.36947403e−01


The first eigenvector corresponding to the only positive eigenvalues indicates the best cut.

6.3 Clusters in a stream of edges

A window can be defined by a time interval [t, t+ λ], of length λ. All the edges which appear in this interval
define Gt. One may view the sequence t = τ, 2.τ, 3.τ....., i.e. a discrete view of Gt. We will apply this analysis
to the Twitter content graph. You give some tags such as #bitcoin, #xrp, #cnn,.... and Twitter gives you
the stream of tweets which contains at least one tag of your list. You convert the tweets into edges and have
a stream of edges. Typically you will collect approximately 2.104 edges every hour, 48.104 every day and
30.48.104 = 0.15.108 edges in a month. If you follow 7 streams in parallel, you collect approximately 108

edges, i.e. bigdata.

6.4 Random graphs

The classical Erdös-Renyi model G(n, p) [6], generates random graphs with n nodes and edges are taken
independently with probability p where 0 < p < 1. The degree distribution is close to a gaussian centered on
n.p. Most of the social graphs have a degree distribution close to a power law (such as a Zipfian distribution
distribution where Prob[d = j] = c/j2). The Preferential Attachment or the Configuration Model [11] provide
models where the degree distribution follows such a power law. In the Configuration Model, the degree
distribution can be an arbitrary distribution D: given n nodes, we fix d1, d2, ...dmax as the number of nodes
of degree 1, 2, ... where dmax is the maximum degree. In order to generate a random graph with n nodes and
the degree distribution D, we enumerate each node u with d half-edges (stubs) and takes a symmetric random
matching π between two stubs, for example with a uniform permutation such that π(i) 6= i and π(i) = j iff
π(j) = i. Then all the possible graphs are obtained with a distribution close to the uniform distribution.

In the case of a Zipfian degree distribution, the number of nodes of degree j is n.c/j2 which is less than
1 if j >

√
c.n hence dmax = O(

√
n). We have c.n nodes of degree 1, c.n/4 nodes of degree 2, c.n/9 nodes

of degree 3 and so on. There are several other possible models of random graphs with a power law degree
distribution, in particular that the probability for a node to be of degree j is asymptotically c/j2.

A classical study is to find sufficient conditions so that the random graph has a giant component, i.e.
of size O(n) for a graph of size n. In the Erdös-Renyi model G(n, p), it requires that p > 1/n, and in the
Configuration Model IE[D2] − 2IE[D] > 0 which is realized for the Zipfian distribution. There is a phase
transition for both models.

6.4.1 Random graphs with a power law degree distribution and a cluster

Fix some a subset S among the nodes of high degree and consider a preferential matching for S. A stub is in
S if its origin or extremity is in S. With probability 80%, match the stubs in S uniformly in S and with
probability 20%, match the stubs uniformly in V − S. As we pick a random stub, it is in S or in V − S The
edges concentrate in S and create a γ-cluster.

As an example, let S be a subset of size
√
n/2 nodes among the nodes of degree

√
n,
√
n− 1,

√
n/2.

We have a γ-cluster with γ.n/4 edges.

50

6.5 Dynamic Random graphs

There are several possible extensions to dynamic random graphs. In our model, the Dynamics is exogenous
and at any time chooses between the Uniform and the Concentrated Dynamics.

6.5.1 Uniform Dynamics

We generalize the Configuration Model in a dynamic setting. Consider the following Uniform Dynamics:
remove q ≥ 2 random edges, uniformly on the set of edges of G, freeing 2.q stubs. Generate a new uniform
matching on these hubs to obtain G′. The distribution of random graphs is uniform.

6.5.2 Concentrated Dynamics

A typical graph generated by the Uniform Dynamics is not likely to have a large cluster. Consider the
S-concentrated Dynamics, starting from an arbitrary graph G: fix some a subset S among the nodes of
high degree. Remove q ≥ 2 edges, uniformly on the set of edges of G, freeing 2.q stubs, as before. A stub is
in S if its origin or extremity is in S. With probability 80%, match the stubs in S uniformly in S. With
probability 20%, match the stubs in S uniformly in V − S. This dynamics will concentrate edges in S and
will create a γ-cluster after a few iterations with high probability, assuming the degree distribution is a power
law. The distribution of graphs with a γ-cluster is also uniform.

6.5.3 General Dynamics

a general Dynamics is a function which chooses at any given time, one of the two strategies: either a Uniform
Dynamics or some S-concentrated Dynamics for a fixed S. An example is the Step Dynamics: apply
the Uniform Dynamics first, then switch to the S-dynamics for a time period ∆, and switch back to the
Uniform Dynamics. In our setting, the Dynamics depends on some external information, which we try to
approximately recover. Notice that during the Uniform Dynamics phase, there are no large components and
we store nothing. For the step phase, we store some components which will approximate S. More complex
strategies could involve several clusters S1 and S2 which mayor may not intersect. One may have a ∆1 step
on S1 and then another ∆2 step on S2, which may or may not overlap.

6.5.4 Stream of edges

Let e1, e2,ei... be a stream of edges where each ei = (u, v). It defines a graph G = (V,E) where V is the
set of nodes and E ⊆ V 2 is the set of edges: we allow self-loops and multi edges and assume that the graph
is symmetric. In the window model we isolate the most recent edges at some discrete t1, t2, We fix the
length of the window τ , hence t1 = τ and each ti = τ + λ.(i− 1) for i > 1 and λ < τ determines a window
of length τ and a graph Gi defined by the edges in the window or time interval [ti − τ, ti] . We therefore
generate a sequence of graphs G1, G2, ... at times t1, t2, ... and write G(t) for this sequence. The graphs Gi+1

and Gi share many edges: old edges of Gi are removed and new edges are added to Gi+1. Social graphs have
a specific structure, a specific degree distribution (power law), a small diameter and some dense clusters. The
dynamic random graphs introduced in the next section satisfy these conditions.

6.6 Deciding properties

We first consider a property on static graphs and then on dynamic graphs. Let R be the Reservoir of size k
after we read m edges e1, e2,em. In this simple case, we first fill the Reservoir with e1, e2,ek. For i > k,
we decide to keep ei with probability k/i and if we keep ei, we remove one of the edges (with probability
1/k) to make room for ei. Each edge ei has then probability k/m to be in the Reservoir, i.e. uniform.

51

The probabilistic space Ω is determined by the choices taken at every step by the Reservoir sampling.
Consider a clique S in the graph: its image in the Reservoir is the set GS of internal edges e = (u, v) in the
Reservoir, where u, v ∈ S. Each edge of the clique S is selected with constant probability k/m, so we are in
the case of the Erdös-Renyi model G(n, p) where n = |S| and p = k/m. We know that the phase transition
occurs at p = 1/n, i.e. there is a giant component if p > 1/n and the graph is connected if p ≥ log n/n.

In the case of a γ-clusters S associated with the S-concentrated Dynamics, the phase transition occurs at
p = 1/γ.n. Let VS be the set of nodes of the giant component GS whose nodes are in S. As it is customary
for approximate algorithms, we write ProbΩ[Condition] ≥ 1− δ to say that the Condition is true with high
probability.

Lemma 12 For m large enough, there exists α = O(log n) such that if |S| ≥ m/γ.k, then ProbΩ[|VS | > α] ≥
1− δ.

Proof : If S is almost a clique, i.e. a γ-cluster, then the phase transition occurs at p = 1/γ.|S|. Hence if p > 1/γ.|S|,
there is a giant component of size larger than a constant times |S|, say |S|/2 with high probability 1 − δ. As the

probability of the edges is k/m, it occurs if |S| ≥ m/γ.k. Hence for m large enough, there exists α = O(logn) such

that ProbΩ[|VS | > α] ≥ 1− δ.

In order to decide the graph property P : there is a large γ-cluster, consider this simple algorithm.

Static Cluster detection Algorithm 1: let C be the largest connected component of the Reservoir R.
If |C| ≥ α then Accept, else Reject.

Theorem 6 If |S| ≥ m/γ.k in the S-concentrated Dynamics, then ProbΩ[Algorithm 1 Accepts] ≥ 1− δ and
for the Uniform Dynamics ProbΩ[Algorithm 1 Rejects] ≥ 1− δ.

Proof : If |S| ≥ m/γ.k for the concentrated Dynamics, Lemma 12 states that |VS | > α with high probability,

hence as VS ⊆ C, the condition |C| ≥ α is true with high probability hence ProbΩ[Algorithm 1 Accepts] ≥ 1 − δ.
For the Uniform Dynamics (|S| = 0), [9] shows that the largest connected component has size O(logn). Hence

ProbΩ[Algorithm 1 Rejects] ≥ 1− δ.

Notice that m = c1.n. log n, as the average degree in a power law is c1. log n. If k =
√
c1.n. log n and

|S| ≥ m/γ.k =
√
c1.n/γ, it satisfies the condition and it can be realized with the nodes of high degree.

6.6.1 Deciding a dynamic property: ♦ P

Let P be the previous property: is there a γ-cluster? How do we decide ♦ P? Consider the step strategy of
length ∆ > τ . When we switch strategy at time t1 there is a delay until S is a γ-cluster and symmetrically
the same delay when we switch again at time t2 > t1. The probabilistic space Ωt is now much larger.

Dynamic Cluster detection Algorithm 2: let Ci be the largest connected component of a dynamic
Reservoir Ri at time ti. If there is an i such that |Ci| ≥ α, then Accept, else Reject.

We can still distinguish between the Uniform and the S-concentrated Dynamics, if S is large enough. Let
m(t) be the number of edges in the window at time t. Let G(t) be a graph defined by a stream of m(t) edges
following a power law D.

Theorem 7 For the step Dynamics on length ∆ and t > t2, if |S| ≥ m(t)/γ.k and m(t) large enough, then
ProbΩ[A2 Accepts] ≥ 1− δ∆/τ For the Uniform Dynamics ProbΩ[A2 Rejects] ≥ (1− δ)∆/λ.

Proof : For each window, we can apply theorem 6 and there are ∆/τ independent windows. If |S| ≥ m/γ.k for the

concentrated Dynamics, the error probability is smaller than the error made for ∆/τ independent windows, which is

δt/τ . Hence ProbΩ[Algorithm 2 Accepts] ≥ 1− δδ/λ. For the Uniform Dynamics (equivalent to |S| = 0), the algorithm

52

Figure 6.2: Number of edges in 1h windows, for 4 streams during 24h

needs to be correct at each δ/λ step. Hence ProbΩ[Algorithm 2 Rejects] ≥ (1− δ)δ/λ.

The probability to accept for the S concentrated Dynamics is amplified whereas the probability to reject
for the Uniform Dynamics decreases. One single error generates a global error. Clearly, we could also estimate
∆, for step strategies with similar techniques.

6.6.2 Correlation between two streams

Suppose we have two streams G1(t) and G2(t) which share the same clock. Suppose that G1(t) is a step
strategy ∆1 on a cluster S1 and G2(t) is a step strategy ∆2 on a cluster S2. Let ρ∗ = J(S1, S2). How good
is the estimation of their correlation? Let Ci(t) =

⋃
j Ci,j be the set of large clusters Ci,j at time tj of the

graph Gi, for i = 1 or 2 at time t. Consider the following online algorithm to compute ρ(t):

Online Algorithm 3 for ρ(t). At time t+ λ, compute the increase δi in size of Ci(t+ λ) for i = 1, 2
from Ci(t), and δ′ the increase in size of C1(t+ λ)∩C2(t+ λ). Suppose ρ(t) = I/U where I = |C1(t)∩C2(t)|
and U = |C1(t) ∪ C2(t)|. Then: ρ(t+ λ) = ρ(t) + U.δ′−I.(δ1+δ2)

U.(U+δ1+δ2) .

A simple computation shows that ρ(t+ λ) = I+δ′

U+δ1+δ2
, i.e. the correct definition.

Theorem 8 Let G1(t) and G2(t) be two step strategies before time t on two clusters such that |Si| ≥ m/γ.k
for i = 1, 2. Then ProbΩt

[|ρ(t)− ρ∗| ≤ ε] ≥ 1− δ.

Proof : After the first observed step, for example on S1, Lemma 12 indicates that VS1 is already some approximation

of S1. After ∆1/τ independent trials, V1 =
⋃
i VS1,i will be a good approximation of S1. Similarly for S2 and therefore

ρ(t) = J(V1, V2) will (ε, δ) approximate ρ∗.

6.7 Twitter streams

Given a set of tags such as #CNN or #Bitcoin, Twitter provides a stream of tweets represented as Json trees
whose content contains at least one of these tags. The Twitter Graph of the stream, is the graph G = (V,E)
with multiple edges E where V is the set of tags #x or @y seen and for each tweet sent by @y which contains

53

Figure 6.3: Online content correlation for 24h

Figure 6.4: Online averaged content correlation for 24h

tags #x ,@z we construct the edges (@y,#x) and (@y,@z) in E. The URL’s which appear in the tweet can
also be considered as nodes but we ignore them for simplicity. A stream of tweets is then transformed into a
stream of edges e1,em,

We simultaneously captured 4 twitter streams1 on the tags #CNN, #FoxNews, #Bitcoin, and #Xrp
(Ripple) during 24 hours with a window size of τ = 1h and a time interval λ = 30mins, using a standard PC.
Figure 6.2 indicates the number of edges seen in a window, approximately m = 20.103 per stream, on 48

1Using a program available on https://github.com/twitterUP2/stream which takes some tags, a Reservoir size k, a window
size τ , a step λ and saves the large connected components of the Reservoirs Rt.

54

points. For 24 independent windows, we read approximately 48.104 edges, and globally approximately 2.106

edges. The Reservoirs size k = 400 and on the average we save 100 nodes and edges, i.e. 4.48.100 ' 2.104

edges, i.e. a compression of 100. For γ = 0.8, the minimum size of a cluster is m/γ.k ' 60. Notice that k is
close to

√
m.

Figure 6.3 gives the three mains correlations ρ(t) out of the possible 6 and the averaged correlation

ρ′(t) = (ρ(t− 1) + ρ(t) + ρ(t+ 1))/3

The correlation is highly discontinuous, as it can be expected, but the averaged version is smooth. The
maximum value is 1% for the correlation and 0.5% for the averaged version. It is always small as witnessed
by the correlation matrix. We experienced very small changes in the correlations and ρ′(t), also computed
online, witnessed it. The spectrum of the Reservoirs, i.e. the sizes of the large connected components is
another interesting indicator. For the #Bitcoin stream, there is a unique very large component.

6.8 Search by correlation

We stored the large clusters for each stream, i.e. the set of nodes of the clusters. Given a search query defined
by a set of tags, the answer to a query is the set of the most correlated tags, among the stored tags. From the
correlation matrix of the streams, we infer a phylogeny tree. We first extend the correlation between a tag
and a set of tags. We can then compute the tags with the highest correlations, as the answer to the query.

55

56

Chapter 7

Dimension reduction

Suppose we have n points in Rd, where both n and d are large. We can evaluate a property or make a
prediction: can we just analyze a much smaller set of values? There are several approaches:

• Reduce the columns. Instead of d = 104 columns, maybe 200 are sufficient.

• Reduce the rows. This is sometimes called a coreset.

• Reduce both the rows and the columns.

We first study a general result, stating that we can always reduce the number of columns, without changing
too much the distances between the points. We then study the practical version called principal component
analysis or PCA.

7.1 The fundamental result

Consider d independent gaussian N(0, 1) variables X1, ...Xd. Let |X| =
√
X2

1 +X2
d be the norm of X, and

let Y be Y = (X1,...Xd)
|X| . Observe that Y is on the sphere of dimension d.

Theorem 9 [Johnson-Lindenstrauss theorem] For any ε and any n, let

k ≥ 4. log n/ε2

Then for any set V of n points in Rd, there is a probabilistic map f : Rn → Rk such that for u, v ∈ V :

Prob[(1− ε)|u− v|2 ≤ (|f(u)− f(v)|2 ≤ (1 + ε)|u− v|2] ≥ 1/n

and f is computable in randomized polynomial time.

Proof :
We project Y on the first k dimension, for example d = 104 and k = 100. Let Z be the projected point and let

L = |Z2| be its length.

IE[|Z2|] = IE[
∑

i=1,...k

Y 2
i] =

∑
i=1,...k

IE[Y 2
i] =

∑
i=1,...k

IE[X2
i /|X2|] = k/d

Not only the expectation of L is k/d but it is concentrated around its value. It means that if k ≥ 4. logn/ε2:

Prob[L ≤ (1− ε).µ] ≤ 1/n2

Prob[L ≥ (1 + ε).µ] ≤ 1/n2

57

Then

Prob[L /∈ [1− ε, 1 + ε]] ≤ 2/n2

Or:

Prob[L ∈ [1− ε, 1 + ε]] ≥ 1− 2/n2

Set f(v) =
√
d/k.v′ where v′ is the projection of the point v on the first k dimensions. Let u and v be two given

points. Let us call X = u− v and X ′ its projection on the first k coordinates. Then:

|f(u)− f(v)|2 ' d/k.
∑

i=1,...k

X ′i
2

= d/k.k/d.
∑

i=1,...d

Xi
2 = |u− v|2

More precisely:
Prob[|f(u)− f(v)|2/|u− v|2 /∈ [1− ε, 1 + ε]] ≤ 2/n2

If we take the
(
n
2

)
pairs (u, v), the probability that some pair has a large distortion is at most n.(n−1)/2·2/n2 = 1−1/n.

Finally:
Prob[∀u, v(1− ε)|u− v|2 ≤ (|f(u)− f(v)|2 ≤ (1 + ε)|u− v|2] ≥ 1/n

The conclusion is that we can repeat several choices of a random projection: at some point we will find
one which satisfies the low distortion property.

7.1.1 Random projections

The following program construct a projection matrix of size (10000, 50) using values in N(0, 1).

import numpy as np

import matplotlib.pyplot as plt

rn=np.random.standard_normal(10000*50)

rn=rn.reshape(11000,50)

transformation_matrix = np.asmatrix(rn)

If we mutliply the original matrix A of dimension (n, d) by the matrix rn of dimension (d, k), we obtain
the new matrix A′ of dimension n, k, much smaller.

7.1.2 Gaussian distributions

Recall the basic gaussian distribution N (0, 1):

ϕ(x) =
e−x

2/2

√
2π

Recall ∫ ∞
−∞

ϕ(x) dx = 1

We show this result using the polar coordinates r, θ.

(

∫ ∞
−∞

ϕ(x) dx)2 =

∫ ∞
−∞

ϕ(x) dx.

∫ ∞
−∞

ϕ(y) dy =

∫ ∞
−∞

∫ ∞
−∞

ϕ(x).ϕ(y) dxdy

∫ ∞
−∞

∫ ∞
−∞

e−x
2/2

√
2π

.
e−y

2/2

√
2π

dxdy =

∫ ∞
−∞

∫ ∞
−∞

e(−x2−y2)/2

2π
dxdy

Introduce the polar coordinates r, θ, i.e. r2 = x2 + y2 and dxdy = r.drdθ:

58

∫ ∞
−∞

∫ ∞
−∞

e(−x2−y2)/2

2π
dxdy =

∫ 2π

0

∫ ∞
0

e−r
2/2

2π
r.drdθ =

∫ ∞
0

r.e−r
2/2 dr

Introduce s = −r2/2, i.e. ds = −rdr:∫ ∞
0

r.e−r
2/2 dr = −

∫ −∞
0

es ds = −[e−∞ − e0] = 1

The specific property we will use is that if we pick x, y, z as three independent gaussian variables of
N (0, 1), let r2 = x2 + y2 + z2 and consider X = (x/r, y/r, z/r), then X is uniformly distributed on the sphere
of dimension 3. The density function is:

ϕ(x, y, z) =
e−x

2/2

√
2π

.
e−y

2/2

√
2π

.
e−z

2/2

√
2π

=
e−r

2/2

(2π)3/2

Notice that the density function only depends on r but not on θ.

7.2 PCA: Principal Components Analysis

The dimension reduction is a classical subject, called Principal Components Analysis. A typical dataset is
not a uniform distribution of points, and in some cases we can project each point of dimension d on a space
of smaller dimension. Consider 3 points in 4 dimensions,given by the following matrix.

A =

0.1 2 2.0 1.3
0.4 3 3.0 1
0.1 4 4.1 1.2



PCA:	
 reduce	
 the	
 dimension	

3	
 points	
 in	
 dimension	
 3	
 Same	
 	
 points	
 in	
 dimension	
 1	

Figure 7.1: Projections on the main eigenvector

In a practical situation, d = 104 and we can project each point on a space of dimension d′ = 200.

59

7.2.1 Covariance

The covariance of two random variables X1 and X2 whose means are µ1 and µ2 is

cov(X1, X2) = IE[(X1 − µ1).(X2 − µ2)]

Let σ1 and σ2 the standard deviations, i.e. σ2 = IE[(X − µ)2] = IE[X2] − (IE[X])2. The covariance is
also related to the Pearson Correlation coefficient:

ρ(X1, X2) = cov(X1, X2)/σ1.σ2 = IE[(X1 − µ1).(X2 − µ2)]/σ1.σ2

The covariance matrix B interprets the lines as random variables.

B(i, j) = cov(Xi, Xj)

In our example, the matrix has 3 lines and the covariance matrix is a (3, 3) matrix. One can also write
B = A.At/n. Unfortunately, sometimes B can also be defined as A.At/n− 1.

The basic Python instruction to compute the covariance is:

B=np.cov(A)

It assumes an numpy object np. We can also write:

B=np.cov(L,bias=0)

It computes the covariance normalized by n− 1. To compute the covariance normalized by n, we write:

B=np.cov(L,bias=1)

We can also interpret the columns as random variables and in this case we transpose the matrix A. The
Python instruction is:

A1=A.T

Recall the notions of Eigenvalues and Eigenvectors from section 6.2.1. The eigenvalues are complex
values (in C) but for a large class of matrices, called Positive Semi Definite, the values are reals and positive.
Covariance matrices belong to this class.

The Python code, assuming an object la of the ” linalg” library (linear algebra) is:

w,v=la.eig(A)

The vector w gives the n eigenvalues. The matrix v gives the n eigenvectors represented as columns.

7.2.2 Gram representation

Given n vectors v1, ...vn of dimension n, the Gramian matrix is G(i, j) = ui.uj . If L is the matrix where the
lines are the vectors v1, ...vn, then:

G(i, j) = L.Lt

For every positive semidefinite matrix A there is a matrix L such that A = L.Lt, in particular for the
covariance matrix. The Cholesky decomposition construct such an L. The Python instruction is:

L = la.cholesky(A)

60

7.2.3 Principal components

The principal components refer to the eigenvectors associated with the large eigenvalues. If we neglect the
small eigenvalues, we will find a close covariance matrix and an original matrix with fewers dimensions, i.e.
fewer columns.

7.3 Python code

7.3.1 Covariance, Eigenvectors

import numpy as np

import scipy.linalg as la

A = np.array([[0.1,2,2.0,1.3],[0.4,3,3.0,1],[0.1,4,4.1,1.2]])

print("A=",A)

B=np.cov(A)

print("B=",B)

w,v=la.eig(B)

print("Eigenvalues of B",w)

print("Eigenvectors of B \n",v)

--

A= [[0.1 2. 2. 1.3]

[0.4 3. 3. 1.]

[0.1 4. 4.1 1.2]]

B= [[0.80333333 1.11666667 1.69333333]

[1.11666667 1.82333333 2.71666667]

[1.69333333 2.71666667 4.05666667]]

Eigenvalues of B [6.58837818e+00+0.j 9.43713208e-02+0.j 5.83832237e-04+0.j]

Eigenvectors of B

[[0.33086905 0.9325094 -0.1447477]

[0.52471327 -0.30928564 -0.79310679]

[0.78434792 -0.18646345 0.5916331]]

Covariance of At

import numpy as np

import scipy.linalg as la

A = np.array([[0.1,2,2.0,1.3],[0.4,3,3.0,1],[0.1,4,4.1,1.2]])

C=np.cov(A.T)

print(C)

w1,v1=la.eig(C)

print("Eigenvalues of C",w1)

print("Eigenvectors of C \n",v1)

print("reduced A \n", np.dot(A,v1[:,:1]))

61

Result: ---

[[0.03 0. -0.005 -0.025]

[0. 1. 1.05 -0.05]

[-0.005 1.05 1.10333333 -0.04833333]

[-0.025 -0.05 -0.04833333 0.02333333]]

Eigenvalues of C [2.10525971e+00+0.j 5.14069593e-02+0.j 8.82897147e-17+0.j

3.27348862e-18+0.j]

Eigenvectors of C

[[-0.00134235 -0.76387485 -0.15821894 0.6295915]

[0.68915943 -0.04959599 0.71268639 -0.214213]

[0.72384112 0.07523669 -0.68130144 0.23772499]

[-0.03333935 0.63904217 -0.05360244 0.7079648]]

reduced A

[[2.78252571]

[4.20512536]

[5.68424486]]

7.3.2 Gram’s decomposition

import numpy as np

import scipy.linalg as la

A = np.array([[0.1,2,2.0,1.3],[0.4,3,3.0,1],[0.1,4,4.1,1.2]])

#A=A1.transpose()

B=np.cov(A)

print(B)

w,v=la.eig(B)

print("Eigenvalues of B",w)

print("Eigenvectors of B \n",v)

L = la.cholesky(B)

print("Cholesky decomposition of B \n")

print(L)

print("L.T * L= \n")

print(np.dot(L.T, L))

7.3.3 PCA: reconstruction

import numpy as np

import scipy.linalg as la

A = np.array([[0.1,2,2.0,1.3],[0.4,3,3.0,1],[0.1,4,4.1,1.2]])

#A=A1.transpose()

B=np.cov(A)

print(B)

62

w,v=la.eig(B)

print("Eigenvalues of B",w)

print("Eigenvectors of B \n",v)

vt=v[:,[0]]

vt1=vt.transpose()

print("Main Eigenvectors \n",vt)

print("Main Eigenvectors transposed \n",vt1)

Ak=np.dot(vt1,A)

print("Reduced Ak \n",Ak)

print("-----")

C=np.cov(A.T)

print(C)

w1,v1=la.eig(C)

print("Eigenvalues of C",w1)

print("Eigenvectors of C \n",v1)

v1t=v1[:,[0]]

kA=np.dot(A,v1t)

print("Reduced kA \n",kA)

NA=np.dot(kA,Ak)

print(" A=\n",A)

print(" NA=\n",(1/7.2)*NA)

Result:-----------------------------

[[0.80333333 1.11666667 1.69333333]

[1.11666667 1.82333333 2.71666667]

[1.69333333 2.71666667 4.05666667]]

Eigenvalues of B [6.58837818e+00+0.j 9.43713208e-02+0.j 5.83832237e-04+0.j]

Eigenvectors of B

[[0.33086905 0.9325094 -0.1447477]

[0.52471327 -0.30928564 -0.79310679]

[0.78434792 -0.18646345 0.5916331]]

Main Eigenvectors

[[0.33086905]

[0.52471327]

[0.78434792]]

Main Eigenvectors transposed

[[0.33086905 0.52471327 0.78434792]]

Reduced Ak

[[0.32140701 5.37326958 5.45170437 1.89606054]]

[[0.03 0. -0.005 -0.025]

[0. 1. 1.05 -0.05]

63

[-0.005 1.05 1.10333333 -0.04833333]

[-0.025 -0.05 -0.04833333 0.02333333]]

Eigenvalues of C [2.10525971e+00+0.j 5.14069593e-02+0.j 8.82897147e-17+0.j

3.27348862e-18+0.j]

Eigenvectors of C

[[-0.00134235 -0.76387485 -0.15821894 0.6295915]

[0.68915943 -0.04959599 0.71268639 -0.214213]

[0.72384112 0.07523669 -0.68130144 0.23772499]

[-0.03333935 0.63904217 -0.05360244 0.7079648]]

Reduced kA

[[2.78252571]

[4.20512536]

[5.68424486]]

A=

[[0.1 2. 2. 1.3]

[0.4 3. 3. 1.]

[0.1 4. 4.1 1.2]]

NA=

[[0.12421156 2.076564 2.10687605 0.73275517]

[0.18771622 3.13823225 3.18404171 1.10738503]

[0.25374391 4.24208055 4.30400313 1.49689894]]

7.3.4 PCA: reconstruction via the Gram matrix

import numpy as np

import scipy.linalg as la

A = np.array([[0.1,2,2.0,1.3],[0.4,3,3.0,1],[0.1,4,4.1,1.2]])

#A=A1.transpose()

B=np.cov(A)

print(B)

w,v=la.eig(B)

print("Eigenvalues of B",w)

print("Eigenvectors of B \n",v)

L = la.cholesky(B)

print("Cholesky decomposition of B \n")

print(L)

print("L.T * L= \n")

print(np.dot(L.T, L))

L1=L[:1,:]

print("L1= \n",L1)

64

print("reduced A \n", np.dot(L1.T, L1))

Result:------------------------

[[0.80333333 1.11666667 1.69333333]

[1.11666667 1.82333333 2.71666667]

[1.69333333 2.71666667 4.05666667]]

Eigenvalues of B [6.58837818e+00+0.j 9.43713208e-02+0.j 5.83832237e-04+0.j]

Eigenvectors of B

[[0.33086905 0.9325094 -0.1447477]

[0.52471327 -0.30928564 -0.79310679]

[0.78434792 -0.18646345 0.5916331]]

Cholesky decomposition of B

[[0.89628864 1.24587841 1.88927233]

[0. 0.52069217 0.69688598]

[0. 0. 0.04082483]]

L.T * L=

[[0.80333333 1.11666667 1.69333333]

[1.11666667 1.82333333 2.71666667]

[1.69333333 2.71666667 4.05666667]]

L1=

[[0.89628864 1.24587841 1.88927233]]

reduced A

[[0.80333333 1.11666667 1.69333333]

[1.11666667 1.552213 2.3538036]

[1.69333333 2.3538036 3.56934993]]

7.4 Recommendation Systems

Consider 4 customers and 12 products such that A(i, j) = c if c is the intensity of the like of customer i for
product j.

A =


0 1 2 0 0 0 0 0 0 1 1 0
1 0 1 0 0 0 0 0 0 0 1 2
0 0 1 0 0 1 1 2 0 0 0 0
0 1 0 0 1 1 0 2 0 0 0 0


Notice that the first two lines are close, the last two lines are close and that a line of the first group is

far from a line of the last group. We say that A is close to a matrix of rank 2. Remember that the rank of
a matrix is the minimum number of independent lines, also equal to the minimum number of independent
columns. A line is dependent if it is a linear combinations of other lines.

We could apply the dimension reduction to A. As a matter of fact, we can do something more surprising.
Suppose we only know a small fraction of A, i.e. a small proportion of the values A(i, j). Can we retrieve
A, i.e. find the missing values? It turns out that is is possible, if we assume that A is close to a low rank matrix.

Suppose we hide some of the values of A, i.e. set them to −. For example:

65

A =


0 1 − 0 0 0 0 0 0 1 1 0
− 0 1 0 0 0 0 0 0 0 1 −
0 0 1 0 0 1 1 − 0 0 0 0
0 1 0 0 − 1 0 − 0 0 0 0


We want to keep the same norm as the original matrix, so we multiply all the elements by 1.7 and set the

− to 0̄.

A =


0 1.7 0̄ 0 0 0 0 0 0 1.7 1.7 0
0̄ 0 1.7 0 0 0 0 0 0 0 1.7 0̄
0 0 1.7 0 0 1.7 1.7 0̄ 0 0 0 0
0 1.7 0 0 0̄ 1.7 0 0̄ 0 0 0 0


We take the following approach, for an (m,n) matrix A:

• Assume A′ is the matrix A where only a fraction of A is known, but the norm of A is approximately
known. We multiply all the values of A′ by some constant, so that A and A′ have approximately the
same norm.

• We reduce the matrix along its lines to the k largest eigenvalues. We obtain an (k, n) matrix B.

• We reduce the matrix along its columns to the k largest eigenvalues. We obtain an (m, k) matrix C.

• Then A is close to C.B.

7.4.1 Python’s code: Recommendation Systems

import numpy as np

from numpy import linalg as LA

Ainitial = np.array([[0,1,2,0,0,0,0,0,0,1,1,0], [1,0,1,0,0,0,0,0,0,0,1,0],

[0,0,0,0,0,1,1,2,0,0,0,0],[0,0,0,0,1,1,0,2,0,0,0,0]])

A= np.array([[0,1.7,0,0,0,0,0,0,0,1.7,1.7,0], [0,0,1.7,0,0,0,0,0,0,0,1.7,0],

[0,0,0,0,0,1.7,1.7,0,0,0,0,0],[0,0,0,0,0,1.7,0,0,0,0,0,0]])

print(A)

B=np.cov(A)

print("Covariance of A \n",B)

w, v = LA.eig(B)

print("Eigenvalues",w)

print("Eigenvectors \n",v)

vt=v[:,[0,1]]

vt1=vt.transpose()

print("Main Eigenvectors \n",vt)

print("Main Eigenvectors transposed \n",vt1)

Ak=np.dot(vt1,A)

print("Reduced Ak \n",Ak)

print("----------- \n")

A1=A.transpose()

B1=np.cov(A1)

print("Covariance of A transpose \n",B1)

w1, v1 = LA.eig(B1)

66

print("Eigenvalues",w1)

#print("Eigenvectors \n",v1)

v1t=v1[:,[0,2]]

kA=np.dot(A,v1t)

print("Reduced kA \n",kA)

NA=np.dot(kA,Ak)

print(" A=\n",A)

print(" Ainitial=\n",Ainitial)

print(" NA=\n",NA)

Result:-----------------------

[[0. 1.7 0. 0. 0. 0. 0. 0. 0. 1.7 1.7 0.]

[0. 0. 1.7 0. 0. 0. 0. 0. 0. 0. 1.7 0.]

[0. 0. 0. 0. 0. 1.7 1.7 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 1.7 0. 0. 0. 0. 0. 0.]]

Covariance of A

[[0.59113636 0.13136364 -0.13136364 -0.06568182]

[0.13136364 0.43787879 -0.08757576 -0.04378788]

[-0.13136364 -0.08757576 0.43787879 0.21893939]

[-0.06568182 -0.04378788 0.21893939 0.24083333]]

Eigenvalues [0.80385779 0.44406254 0.36129026 0.09851667]

Eigenvectors

[[0.67497853 0.58637578 0.44680097 -0.03059932]

[0.40654238 0.20834975 -0.88923574 -0.02394721]

[-0.52852955 0.63825584 -0.07716004 -0.55437562]

[-0.31588572 0.45319236 -0.06062189 0.83135906]]

Main Eigenvectors

[[0.67497853 0.58637578]

[0.40654238 0.20834975]

[-0.52852955 0.63825584]

[-0.31588572 0.45319236]]

Main Eigenvectors transposed

[[0.67497853 0.40654238 -0.52852955 -0.31588572]

[0.58637578 0.20834975 0.63825584 0.45319236]]

Reduced Ak

[[0. 1.1474635 0.69112205 0. 0. -1.43550596

-0.89850024 0. 0. 1.1474635 1.83858555 0.]

[0. 0.99683883 0.35419457 0. 0. 1.85546193

1.08503492 0. 0. 0.99683883 1.3510334 0.]]

Covariance of A transpose

[[0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.]

[0. 0.7225 -0.24083333 0. 0. -0.48166667

-0.24083333 0. 0. 0.7225 0.48166667 0.]

[0. -0.24083333 0.7225 0. 0. -0.48166667

-0.24083333 0. 0. -0.24083333 0.48166667 0.]

[0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.]

67

[0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.]

[0. -0.48166667 -0.48166667 0. 0. 0.96333333

0.48166667 0. 0. -0.48166667 -0.96333333 0.]

[0. -0.24083333 -0.24083333 0. 0. 0.48166667

0.7225 0. 0. -0.24083333 -0.48166667 0.]

[0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.]

[0. 0.7225 -0.24083333 0. 0. -0.48166667

-0.24083333 0. 0. 0.7225 0.48166667 0.]

[0. 0.48166667 0.48166667 0. 0. -0.96333333

-0.48166667 0. 0. 0.48166667 0.96333333 0.]

[0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.]]

Eigenvalues [3.01000269e+00 +0.00000000e+00j 4.32163351e-01 +0.00000000e+00j

1.37450062e+00 +0.00000000e+00j -8.22128312e-17 +9.37970250e-17j

-8.22128312e-17 -9.37970250e-17j 1.73461671e-49 +0.00000000e+00j

0.00000000e+00 +0.00000000e+00j 0.00000000e+00 +0.00000000e+00j

0.00000000e+00 +0.00000000e+00j 0.00000000e+00 +0.00000000e+00j

0.00000000e+00 +0.00000000e+00j 0.00000000e+00 +0.00000000e+00j]

Reduced kA

[[-2.15014853+0.j -1.38982446+0.j]

[-1.25417116+0.j 1.41395382+0.j]

[1.48629494+0.j -0.50900676+0.j]

[0.93169817+0.j -0.28761664+0.j]]

A=

[[0. 1.7 0. 0. 0. 0. 0. 0. 0. 1.7 1.7 0.]

[0. 0. 1.7 0. 0. 0. 0. 0. 0. 0. 1.7 0.]

[0. 0. 0. 0. 0. 1.7 1.7 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 1.7 0. 0. 0. 0. 0. 0.]]

Ainitial=

[[0 1 2 0 0 0 0 0 0 1 1 0]

[1 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 1 1 2 0 0 0 0]

[0 0 0 0 1 1 0 2 0 0 0 0]]

NA=

[[0.00000000+0.j -3.85264794+0.j -1.97828333+0.j 0.00000000+0.j

0.00000000+0.j 0.50778465+0.j 0.42390089+0.j 0.00000000+0.j

0.00000000+0.j -3.85264794+0.j -5.83093127+0.j 0.00000000+0.j]

[0.00000000+0.j -0.02963157+0.j -0.36597057+0.j 0.00000000+0.j

0.00000000+0.j 4.42390765+0.j 2.66106235+0.j 0.00000000+0.j

0.00000000+0.j -0.02963157+0.j -0.39560214+0.j 0.00000000+0.j]

[0.00000000+0.j 1.19807150+0.j 0.84692377+0.j 0.00000000+0.j

0.00000000+0.j -3.07802791+0.j -1.88772647+0.j 0.00000000+0.j

0.00000000+0.j 1.19807150+0.j 2.04499527+0.j 0.00000000+0.j]

[0.00000000+0.j 0.78238222+0.j 0.54204490+0.j 0.00000000+0.j

0.00000000+0.j -1.87111999+0.j -1.14920512+0.j 0.00000000+0.j

0.00000000+0.j 0.78238222+0.j 1.32442711+0.j 0.00000000+0.j]]

68

7.5 Applications

MNIST dataset: https://www.kaggle.com/c/digit-recognizer/data
Applied random projections: https://ashokharnal.wordpress.com/tag/random-projections-tutorial/
Gaussian distributions: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html

import numpy as np

import PIL.Image as pil

import matplotlib.pyplot as plt

m is the number of dimensions

n is the number of points

k is the dimension of the projection

m=100

n=50

k=20

a is the matric n,m

a = np.random.randn(n, m)

k is the dimension of the projection

z is the length of the projection

r is the sequence of n lengths of the projections

X is [1,2,....n]

x is the length of each row vector

we plot the graph X,r

r=[]

X=[]

for i in range(0,n):

x=0

for j in range(0,m):

x=x+a[i,j]*a[i,j]

z= 0

for j in range(0,k):

z=z+(a[i,j]*a[i,j])/x

r.append(z)

print(r)

for x in range(0, n):

X.append(x+1)

plt.plot(X,r)

plt.show()

7.6 SVD decompositions

69

70

Chapter 8

Learning

Learning is the paradigm where an algorithm can be created from examples, provided by the original data.
One distinguishes:

• Supervised learning: in this case each example specifies a class, or a target value y for an input x. We
have n examples viewed as f(x1) = y1, f(x2) = y2, ...f(xn) = yn for some unknown function f . We
look for a function g such that f 'ε g.

• Unsupervised learning: we just have n points x1,xn. We look for a function g into {1, 2, ...k} such
that if xi ' xj then g(xi) = g(xj) with high probability.

• Reinforcement learning: in this case we are looking for a strategy, i.e. a decision which given some
history decides what to do at each step. Games such as Chess and Go are typical examples. We are
looking for for a function which decides each move of the game, and an adversary follows a similar
strategy.

8.1 Neural Networks

A logistic regression is the combination of a linear function with a non linear function. A neural network is
the composition of several logistic regressions, as a circuit. A deep neural network is the circuit whose depth
is large.

8.1.1 Basic neuron

The basic unit is a neuron, a node with incoming and outcoming edges as in Figure 8.1. This model is
motivated by the brain cells, although brain cells remain mysterious.

The useful non linear functions are: either the sigmoid function or the Relu (Rectified Linear Unit)
function:

• The sigmoid function f(x) = 1
1=e−x

• The Relu function: f(x) =

{
x if x > 0

0 otherwise

71

Neuron

F(x1, x2)

1

x1

x2

w1

w2

b

F(x1, x2)=f(w1.x1+w2.x2+b)

f est une fonction non-linéaire

comme f(x)= |x|

Figure 8.1: A basic neuron:

8.1.2 MLP: Multilayers percepton

Neurons can be organized in layers, which alternate linear and non linear functions. The input layer feeds
hidden layers which feed the result of the network, an acyclic directed graph (DAG) as in Figure 8.3. Each
node in the hidden and output layer applies a linear transformation from the previous layer and a non linear
function f . If X0 is the intial vector, let X1 be the 1st layer, X2 the second layer and Xi the i-th layer. There
exists a matrix A1 such that X1 = f(A1.X0), i.e. we apply the linear transformation followed by the non
linear one (f). In general there exists a matrix Ai such that Xi+1 = f(Ai.Xi).

Assume we choose random weights for the ai,j at the beginning and we try to classify from examples.
Each example specifies X0 and the class as output Y = 1 or Y = 0 if we have two classes. On the first assume,
assume tha class is Y = 1. Most likely both outputs will be close to 0.5. We will then change the weights so
that the value of the first output will increase and the value of the second node will decrease.

A classical procedure is called Back Propagation. It can be understood as a modification of each of the
weights as to minimize the final error E defined as E2 = (Y − 1)2.

8.1.3 Back Propagation

We can view E as a function of the weights E(ai,j). If we take the edge a2,2, it influences E via the paths
indicated on the Figure 8.4.

The variation ∆E can be expressed using the partial derivative of E:

∆E =
∂E

∂a2,2
.∆a2,2

72

Non linear function

1

1

Sigmoid function

1

1

Relu function

Figure 8.2: Two non linear functions: sigmoid and Relu

Similarly for the node xji reached by a2,2:

∆xji =
∂xji
∂a2,2

.∆a2,2

Along one path where xji is the value of the i-th node in the j-th layer, we can similarly write :

∆xj+1
i =

∂xj+1
i

∂xji
.∆xji

Hence:

∆xj+1
i =

∂xj+1
i

∂xji
.
∂xji
∂a2,2

.∆a2,2

For the top path of Figure 8.4, we can write:

∆E =
∂E

∂xj+1
i

.
∂xj+1

i

∂xji
.
∂xji
∂a2,2

.∆a2,2

As there are two possible paths:

∆E =
∑

2 paths

∂E

∂xj+1
i

.
∂xj+1

i

∂xji
.
∂xji
∂a2,2

.∆a2,2

73

Multilayers networks

x1

x2

w1

W2

b

1

Hidden Layers
X1 X2

Input Layer
X0

Output Layer

x3

Pr[Y=1]

Pr[Y=0]

Figure 8.3: Multi layers

8.2 Reinforcement Learning

8.2.1 Markov Decision Processes and Probabilistic Automata

All the MDPs and automata that we will consider in the paper are one the same finite alphabet Σ fixed once
and for all.

Definition 8 A Markov decision Process (MDP) is a 4-uple S = (S, α,A, P) where S is a finite set of states,
α is an initial distribution on states, A is a set of actions, and P : S × A × S → [0; 1] is the transition
relation. P (s, a, t), also writen P (t|s, a), is the probability to arrive in t in one step when the current state is
s and action a ∈ Σ is chosen for the transition.

A probabilistic automaton (PA) A is an MDP with an extra set of final states F ⊆ S. MDPs with finite
state space and finite action sets have been studied in [12, 5] and probabilistic automata. Statistical notions
on the runs generated by a MDP have also been studied in [?]. We will generalize these notions in our context
in order to obtain approximate algorithms for Membership and Equivalence problems.

We detail now the different types of schedulers or policies to resolve the non-determinism of an MDP.

A history on S is a finite or infinite alternating sequence of states and actions, which begins with a state
and ends with a state when finite. We write Ω∗ for the set of finite histories, and Ω for the set of infinite
histories on S.

A scheduler on S is a function σ : Ω∗ →
⋃
s∈S ∆(A(s)) such that for all history h = (s1, a1, ..., , ai−1, si)

on S, σ(h) ∈ ∆(A(si)). That is, a scheduler resolves the non determinism of the system by chosing a
distribution on the set of available actions from the last state of the given history. We write HR for the
set of history dependent and randomized schedulers. A scheduler is deterministic when for all history
h = (s1, a1, ..., , ai−1, si) on S, σ(h) ∈ A(si). We write HD for the set of history dependent deterministic
schedulers.

74

Back propagation

x1

x2

a1,1

a2,1

b

1

Hidden Layers
X1 X2

Input Layer
X0

Output Layer

x3

Pr[Y=1]

Pr[Y=0]
a2 ,2

Figure 8.4: Two paths from the edge a2,2 to each output

If k ∈ N, a scheduler σ is said to have memory k if for any history h = (s1, a1, ..., , ai−1, si) of length
at least k we have σ((s1, a1, ..., , ai−1, si)) = σ((si−k, ai−k, ..., , ai−1, si)). we write MR(i) for the set of
randomized schedulers which have memory less than i. A scheduler is stationary, or memoryless, if it has
memory 0. That is for any history h = (s1, a1, ..., , ai−1, si) we have σ(h) = σ(si). We write SR for the set
of stationary and randomized schedulers, and we write SD for the set of stationary and deterministic schedulers.

State-Actions Frequencies

We present now the more specific notions of statistics on runs for a MDP. In the following S is a MDP with
initial distribution α. The empirical state-action frequency vectors are random variables.

Definition 9 (Expected state action frequency vector) Let σ be a scheduler on S and T ≥ 0. Let
xTσ,α be the vector of R|S×Γ| whose components are:

xTσ,α(s, a) = 1
T+1

∑T
t=0 P

σ
α (Xt = s ∧ Yt = a), ∀s ∈ S, a ∈ Γ

xTσ,α is a distribution on S×Γ, hence a vector in [0; 1]|S×Γ whose components sum to one. In words, xTσ,α(s, a)
is the expected frequency, up to time T of taking state-action (s, a), given the initial distribution of the
system is α. Let σ be a scheduler on S. x∞σ,α is the empty set if xTσ,α does not converge as T → +∞, and the

limit point if xTσ,α converges. We define the following subsets of R|S×A|:

HHR(α) =
⋃
σ∈HR x

∞
σ,α

HSR(α) =
⋃
σ∈SR x

∞
σ,α

HSD(α) =
⋃
σ∈SD x

∞
σ,α

For any initial distribution α on S, HHR(α) = (HSR(α)) = (HSD(α)), where X stands for the closed
convex hull of X.

75

The polytope H for communicating MDPs

An MDP is communicating if there exists a randomized stationary policy which induces a recurrent Markov
chain on its state space. Let H(S) be the set of vectors x in R|S×A| that satisfy:

x(s, a) ≥ 0, ∀s, a ∈ S ×A. (E1)∑
s∈S

∑
a∈A x(s, a) = 1. (E2).∑

s

∑
a P (s′|s, a) · x(s, a) =

∑
a′ x(s′, a′), ∀s′ ∈ S. (E3)

We know that for a weakly communicating MDP S we have H(S) = HHR(α), for all initial distribution
α.

8.2.2 Existence of strategies and Equivalence

Let S be an MDP, ε > 0 and λ > 0 be given. Given wn be word of length n, x be its statistic vector of order
k, we want to decide if there is a scheduler σ such that when following σ, S generates runs rn which is ε-close
to wn or which have statistics ε-close to x, with probability at least λ ∈ [0; 1], a fixed threshold value.

Existence of a strategy. Let wn be word of length n. Is there a scheduler σ on S such that the run rn
is such that Pn

σ[|rn − wn| ≤ ε] > λ?

We may also consider infinite runs, given a statistic vector.

Existence of a strategy for a statistic. Let x ∈ R|Σ|
k

be a statistic vector. Is there a scheduler σ on
S such that: Pσ[|ustatk(r)− x| ≤ ε] > λ?

We write S |=n,λ
ε wn when the answer to the first problem is YES and S |=λ

ε x when the answer to the
second is YES. Let S1,S2 be two MDPs on the same alphabet Σ, ε > 0 and λ > 0 be given.

Simulation. Do we have that for any x ∈ R|Σ|
k

: S1 |=n,λ
ε x =⇒ S2 |=n,λ

ε x?

We write S1 ≺n,λε S2 when this is the case. The Approximate Equivalence is the condition: S1 ≺n,λε S2

and S2 ≺n,λε S1.

76

Chapter 9

Python

Python main ideas:

• Objects and methods

• Dynamic typing x=1; x=’abc’

• Numeric types: int, float, complex, bool

• Data structures: Tuples, Lists and Dictionaries

• Classes: arrays, matrices, graphs,.....

• Main, import

More on the main data structures:

• Tuples

Tuples are fixed lists. They are often keys to dictionaries.

t=(1,2)

t1=(’ab’,3)

print (t[1])

• Lists

nums = [0, 1, 2, 3, 4]

squares = []

for x in nums:

squares.append(x ** 2)

print(squares) # Prints [0, 1, 4, 9, 16]

#Alternative

nums = [0, 1, 2, 3, 4]

squares = [x ** 2 for x in nums]

print(squares) # Prints [0, 1, 4, 9, 16]

77

• Dictionaries

d = {’person’: 2, ’cat’: 4, ’spider’: 8}

for animal in d:

legs = d[animal]

print(’A %s has %d legs’ % (animal, legs))

#Alternative

nums = [0, 1, 2, 3, 4]

even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}

print(even_num_to_square) # Prints "{0: 0, 2: 4, 4: 16}"

#Keys as tuples

d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keys

t = (5, 6) # Create a tuple

print(type(t)) # Prints "<class ’tuple’>"

print(d[t]) # Prints "5"

print(d[(1, 2)]) # Prints "1"

Other types, as classes:

• New Classes

class Greeter(object):

Constructor

def __init__(self, name):

self.name = name # Create an instance variable

Instance method

def greet(self, loud=False):

if loud:

print(’HELLO, %s!’ % self.name.upper())

else:

print(’Hello, %s’ % self.name)

g = Greeter(’Fred’) # Construct an instance of the Greeter class

g.greet() # Call an instance method; prints "Hello, Fred"

g.greet(loud=True) # Call an instance method; prints "HELLO, FRED!"

• Arrays by Numpy

9.1 Random projections

There are 3 main techniques to construct a projection matrix P :

78

f(x) = e−x2/2
√

2π

For three independent trialson x, y, z, then:

f(x, y, z) =
e−x

2/2

√
2π

.
e−y

2/2

√
2π

.
e−z

2/2

√
2π

=
e−|v|

2/2

(2π3/2

https://ashokharnal.wordpress.com/tag/random-projections-tutorial/ MNIST https://www.kaggle.com/c/digit-
recognizer/data

9.2 Json to Dictionary

import requests

import json

dct = {"1": "a", "3": "b", "8": {"12": "c",

"25": "d"}}

for key in dct.keys():

print(key, dct[key])

1 a
3 b
8 ’12’: ’c’, ’25’: ’d’

import requests

import json

dct = {"1": "a", "3": "b", "8": {"12": "c",

"25": "d"}}

print(dct["8"] ["12"])

c

9.2.1 Json API

import requests

import json

r = requests.get(’https://api.coindesk.com/v1/bpi/currentprice.json’)

bitcoin_data = dict(r.json())

bitcoin_value = bitcoin_data["bpi"]["USD"]["rate_float"]

print(bitcoin_value)

79

80

Chapter 10

R

81

82

Bibliography

[1] Noga Alon and Michael Krivelevich. Testing k-colorability. SIAM J. Discrete Math., 15(2):211–227,
2002.

[2] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of np. J.
ACM, 45(1):70–122, 1998.

[3] M. Blum and S. Kannan. Designing programs that check their work. Journal of the ACM, 42(1):269–291,
1995.

[4] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems.
ACM Symposium on Theory of Computing, pages 73–83, 1990.

[5] C. Derman. Finite State Markovian Decision Processes. Academic Press, Inc. Orlando, FL, USA, 1970.

[6] P. Erdös and A Renyi. On the evolution of random graphs. In Publication of the mathematical institute
of the Hungarian Academy of Sciences, pages 17–61, 1960.

[7] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approxi-
mation. Journal of the ACM, 45(4):653–750, 1998.

[8] Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties. Random Struct.
Algorithms, 23(1):23–57, 2003.

[9] Michael Molloy and Bruce Reed. The size of the giant component of a random graph with a given degree
sequence. Comb. Probab. Comput., 7(3):295–305, September 1998.

[10] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[11] Mark Newman. Networks: An Introduction. Oxford University Press, Inc., 2010.

[12] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &
Sons, Inc. New York, NY, USA, 1994.

[13] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program
testing. SIAM Journal on Computing, 25(2):23–32, 1996.

[14] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, 1985.

83

	Introduction
	Mégadonnées

	Preliminaries
	Algorithms
	Basic probabilities
	Probabilistic algorithms
	Error amplification

	Examples of probabilistic algorithms
	Arithmetic corrector
	Trusting a flip
	** Random walk in an undirected graph

	**Important inequalities
	Markov
	Chebyschev
	Chernoff-Hoeffding

	Hadoop: Distributed File System
	HDFS
	Map-Reduce
	A hard example: the edit distance

	Property Testing
	Is a function linear? BLR Linearity Test
	Monotonicity Test *

	Testing words
	Testing Membership for the Edit distance with moves
	Testing Membership for the Edit distance

	Testing Graphs
	Testing vs. Learning
	Learning a linear Classifier
	Learning a Community in a graph

	Exercices

	Streaming
	Moments in a stream of values
	Reservoir Sampling
	Morris Algorithm for estimating F1
	Estimating F0
	Basic estimator for F2

	Graph properties from a stream of edges
	Graph properties by sampling kat
	Graph properties in a stream

	Social Networks
	Pagerank
	Clusters of a given graph
	Basics of linear algebra
	Spectral methods
	Modules via the modularity matrix

	Clusters in a stream of edges
	Random graphs
	Random graphs with a power law degree distribution and a cluster

	Dynamic Random graphs
	Uniform Dynamics
	Concentrated Dynamics
	General Dynamics
	Stream of edges

	Deciding properties
	Deciding a dynamic property: P
	Correlation between two streams

	Twitter streams
	Search by correlation

	Dimension reduction
	The fundamental result
	Random projections
	Gaussian distributions

	PCA: Principal Components Analysis
	Covariance
	Gram representation
	Principal components

	Python code
	Covariance, Eigenvectors
	Gram's decomposition
	PCA: reconstruction
	PCA: reconstruction via the Gram matrix

	Recommendation Systems
	Python's code: Recommendation Systems

	Applications
	SVD decompositions

	Learning
	Neural Networks
	Basic neuron
	MLP: Multilayers percepton
	Back Propagation

	Reinforcement Learning
	Markov Decision Processes and Probabilistic Automata
	Existence of strategies and Equivalence

	Python
	Random projections
	Json to Dictionary
	Json API

	R

